Skip Nav Destination
Close Modal
Search Results for
Brinell hardness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67 Search Results for
Brinell hardness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 August 2021
Fig. 31 Surface finish modification factor vs. tensile strength or Brinell hardness for different surface finishes. Adapted from Ref 90
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001462
EISBN: 978-1-62708-224-2
... at the mid-length of the sides. Brinell hardness values confirmed that the link was made from the higher tensile grade of material. The cracks were due to fatigue, there being no indications that the weld was initially defective. Butt welds Chains Steel chain Fatigue fracture The following case...
Abstract
Failure occurred by fatigue cracking of links from chains which were used to replace the ropes on grabs of the multirope type. In the first example, the links were made from high tensile steel rod. The fracture in the side of the link was duplex in appearance one half of the surface being discolored, indicative of a preexisting crack of the fatigue type, whilst the remaining portion was brightly crystalline, resulting from brittle fracture at the time of the mishap. In the second example, the fracture took place at a similar location adjacent to one of the butt welds situated at the mid-length of the sides. Brinell hardness values confirmed that the link was made from the higher tensile grade of material. The cracks were due to fatigue, there being no indications that the weld was initially defective.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048052
EISBN: 978-1-62708-224-2
.... The chains were retempered to a hardness of 302 to 375 HRB as a corrective measure and subsequently ordered chains had this hardness as a requirement. Brinell hardness Cranes Notch sensitivity Alloy steel Brittle fracture Over a 1-year period, chain-link fractures occurred in many of several...
Abstract
Several thousands of new 16 mm diam alloy steel sling chains used for handling billets failed by chain-link fractures. No failures were found to have occurred before delivery of the new chains. It was observed that the links had broken at the weld. It was found that all failures had occurred in links having hardness values in the range of 375 to 444 HRB. It was revealed by the supplier that the previous hardness level of 302 to 375 HRB was increased to minimize wear which made the links were made notch sensitive and resulted in fractures that initiated at the butt-weld flash on the inside surfaces of the links. A further reduction in ductility was believed to have been caused by lower temperatures during winter months. Thus, the failure was concluded to have been caused in a brittle manner caused by the notch sensitivity of the high hardness material at lower temperatures. The chains were retempered to a hardness of 302 to 375 HRB as a corrective measure and subsequently ordered chains had this hardness as a requirement.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0048077
EISBN: 978-1-62708-221-1
... and tempered to a hardness of 302 to 352 HRB and all machining discontinuities were removed. Brinell hardness Fatigue strength Magnetic particle testing Radii 1040 UNS G10400 Fatigue fracture The 14-cm (5 1 2 -in.) diam main hoist shaft of a mobile shovel was found to have multiple...
Abstract
The 14-cm diam main hoist shaft of a mobile shovel was found to have multiple crack indications when ultrasonically inspected in the field. A crack around the entire circumference at the change in section was revealed by magnetic-particle inspection of the shaft. The crack was found to coincide with the junction of the fillet and the smaller diam at this change in section. A slight step in the continuity of the fillet and some machining marks were noted at this junction. A fine crack extending 2.5 mm from the surface and originating at the machining marks was revealed by microscopic examination. The shaft was identified by chemical analysis to be 1040 steel (hardness 170 HRB) which was concluded to have insufficient fatigue strength. The step at the base of the fillet was revealed as the point of initiation of the fatigue crack. Shaft material was changed to 4140 steel oil-quenched and tempered to a hardness of 302 to 352 HRB and all machining discontinuities were removed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... but is generally used as a pass/fail evaluation Hardness testing Macroindentation hardness testing Rockwell hardness Hardness Need smooth surface finish, flat surface, and parallel sides Sample must fit within the machine and be balanced on the pedestal Brinell hardness Hardness Need smooth...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001760
EISBN: 978-1-62708-241-9
...</xref>, <xref rid="c9001760-ref3" ref-type="bibr">3]</xref> Brinell hardness tests with 250 Kg force and a steel indentor with 5-mm diameter were performed with 15 s interval on the specimen surface. The locations are shown in Figs. 8 and 9 , and the results are listed in Table 3 . It should be mentioned that the average hardness...
Abstract
This article presents a failure analysis of an aluminum cylinder head on an automotive engine. During an endurance test, a crack initiated from the interior wall of a hole in the center of the cylinder head, then propagated through the entire thickness of the component. Metallurgical examination of the crack origin revealed that casting pores played a role in initiating the crack. Stress components, identified by finite element analysis, also played a role, particularly the stresses imposed by the bolt assembly leading to plastic strain. It was concluded that the failure can be prevented by eliminating the bolt hole, using a different type of bolt, or adjusting the fastening torque.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001198
EISBN: 978-1-62708-221-1
... at a comparatively high temperature for stress relief. The core structure of the caps consisted of graphite in pearlitic-ferritic matrix ( Figs. 6 and 7 ). The average Brinell hardness was 160 kgf/mm 2 , from which a low strength could be inferred. Fig. 2 Section through groove parallel to fracture, etch...
Abstract
Cast iron bearing caps in tractor engines fractured repeatedly after only short operating periods. The fracture originated in a cast-in groove and ran approximately radially to the shaft axis. The smallest cross section was at the point of fracture. The core structure of the caps consisted of graphite in pearlitic-ferritic matrix. Casting stresses did not play a decisive role because of the simple shape of the pieces that were without substantial cross sectional variations. Two factors exerted an unfavorable effect in addition to comparatively low strength. First, the operating stress was raised locally by the sharp-edged groove, and second, the fracture resistance of the cast iron was lowered at this critical point by the existence of a ferritic bright border. To avoid such damage in the future it was recommended to observe one or more of the following precautions: 1) Eliminate the grooves; 2) Remove the ferritic bright border; 3) Avoid undercooling in the mold and therefore the formation of granular graphite; 4) Inoculate with finely powdered ferrosilicon into the melt for the same purpose; and, 5) Anneal at lower temperature or eliminate subsequent treatment in consideration of the uncomplicated shape of the castings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0047406
EISBN: 978-1-62708-232-7
... was revised to eliminate all tool marks. Surface hardening was applied to all tooth surfaces, including the root. Proper alignment of the pinion was ensured by carefully checking the meshing of the teeth at startup. Alignment Brinell hardness Gear teeth Stress concentration Fe-0.32C-1.57Cr-0.37Mo...
Abstract
A cast countershaft pinion on a car puller for a blast furnace broke after one month of service; expected life was 12 months. The pinion was specified to be made of 1045 steel heat treated to a hardness of 245 HRB. The pinion steel was analyzed and was a satisfactory alternative to 1045 steel. The pinion was annealed before flame or induction hardening of the teeth to a surface hardness of 363 HRB and a core hardness of 197 HRB. The broken pinion had a tooth which had failed by fatigue fracture through the tooth root because of the low strength from incomplete surface hardening of the tooth surfaces. Contributing factors included uneven loading because of misalignment and stress concentrations in the tooth roots caused by tool marks. Greater strength was provided by oil quenching and tempering the replacement pinions to a hardness of 255 to 302 HRB. Machining of the tooth roots was revised to eliminate all tool marks. Surface hardening was applied to all tooth surfaces, including the root. Proper alignment of the pinion was ensured by carefully checking the meshing of the teeth at startup.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001134
EISBN: 978-1-62708-214-3
... in.). An estimated conversion to Brinell hardness suggested that the material was harder than the value recommended for safety (302 to 352 HB). Microhardness values <xref rid="c9001134-tn1" ref-type="table-fn">(a)</xref> Table 1 Microhardness values (a) Distance from edge Knoop hardness Brinell...
Abstract
An ASTM A391 steel chain link of an over head hoist failed catastrophically, causing damage to both property and personnel. Macrofractography identified the sequence of fractures within the chain link. The first fracture occurred at the welded joint, a second occurred opposite the weld. SEM fractography and metallography indicated that the link failed in a ductile manner because of tensile overload, which occurred when the hoist hook contacted the hoist's housing and prevented uptake of the chain. It was recommended that a load-sensing device be installed to prevent future occurrences and that a dye penetrant inspection be performed on the renwinder of the chain.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048164
EISBN: 978-1-62708-217-4
.... Brinelling Loads (forces) Support 6150 UNS G61500 Brittle fracture Fatigue fracture A flat spring for the main landing gear of a light aircraft broke after safe execution of a hard landing. The spring ( Fig. 1a ) was submitted for laboratory examination. No information was furnished concerning...
Abstract
A flat spring for the main landing gear of a light aircraft failed after safe execution of a hard landing. The spring material was identified by chemical analysis to be 6150 steel. The fracture was found to have occurred near the end of the spring that was inserted through a support member about 25 mm thick and attached to the fuselage by a single bolt. Brinelling (plastic flow and indentation due to excessive localized contact pressure) was observed on the upper surface of the spring where the forward and rear edges of the spring contacted the support member. It was indicated by chevron marks that brittle fracture had started beneath the brinelled area at the forward edge of the upper surface of the spring. The origin of the brittle fracture was found to be a small fatigue crack that had been present for a considerable period of time before final fracture occurred. Fracture of the landing-gear spring was concluded to have been caused by a fatigue crack that resulted from excessive brinelling at the support point. Regular visual examinations to detect evidence of brinelling and wear at the support in aircraft with this configuration of landing-gear spring were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001018
EISBN: 978-1-62708-217-4
... Abstract Initial investigation showed that a landing gear failure was the result of a hard landing with no evidence of contributory factors. The objective of reexamination was to determine whether there was any evidence of metallurgical failure. The landing gear was primarily an AISI type 6150...
Abstract
Initial investigation showed that a landing gear failure was the result of a hard landing with no evidence of contributory factors. The objective of reexamination was to determine whether there was any evidence of metallurgical failure. The landing gear was primarily an AISI type 6150 Cr-V steel flat spring attached at the top end to the fuselage and at the bottom end to the axle. Failure occurred at the clamping point near the top end of this spring. The failure showed evidence of severe brinelling at one corner in the clamping area. The fracture surfaces were clean, fresh, and indicative of a shock type of failure pattern. Closer examination, however, showed a fatigue crack at one corner. At this point, there was definite evidence of progression and oxidation. It was concluded that the corner in question was subjected to repeated brinelling resulting from normal landing loads, probably accentuated by looseness in the clamping device. The resulting residual tensile stress lowered the effective fatigue strength at that point against drag and side loads.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0001784
EISBN: 978-1-62708-218-1
... in.) radius shown in Fig. 1 . The lever is pivoted in a ball socket, and the maximum load transmitted at end A is 1.8 kN (400 lbf). The steel is 1049 hardened to 269 to 285 HB, with properties as given in Table 1 . Fatigue strength of heat-treated wrought steel of various Brinell hardness ranges...
Abstract
Field fatigue failures occurred in a hand-operated gear shift lever mechanism made of 1049 medium carbon steel hardened to 269 to 285 HB. The failures occurred in the 3.18 mm (0.127 in.) radius. Redesign increased the shift lever's diameter to 25 mm (1 in.) and the radius to 4.75 mm (0.187 in.). Also, instead of the as-forged surface, it was expedient to machine the radius. The as-forged surface at 360 MPa (52 ksi) maximum working stress would not ensure satisfactory life because the recalculated maximum stress was 390 MPa (57 ksi). However, the machined surface with a maximum working stress of 475 MPa (69 ksi) gives a safe margin above the 390 MPa (57 ksi) requirement for design stress. Interpreting these values, the forged surface should have a life expectancy of 1,000,000 cycles of stress. However, because the load cycle was somewhat uncertain, the machined radius was chosen to obtain a greater margin of safety. Redesigning eliminated the failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001449
EISBN: 978-1-62708-221-1
... of the plate had served as the point of initiation. The fracture surface was bounded by narrow lips, indicative of shear failure. The welds were not of a pronounced convex form, nor was severe undercutting present. The Brinell hardness of the material was 118, indicating an ultimate tensile strength...
Abstract
An anchorage plate which fractured was one of a pair used as intermediate members through which the boom suspension ropes were attached to the jury-mast of an excavator. Failure of the plate released the ropes on one side of the boom, resulting in extensive damage to the latter and also bending of the other anchorage plate. The anchorage plates were 23 x 9 in. and had been flame-cut from mild steel plate. Collars were fillet-welded on each side at both ends to provide extra bearing area for the pins. Holes had then been flame-cut slightly under size and bored to final dimensions. The plates were given a slight set after flame-cutting to provide a more direct line of pull for the ropes. The fracture surface was bounded by narrow lips, indicative of shear failure. Failure of the anchorage plate was attributed to cracks present at the junctions of the fillet welds, and deficient notch-ductility of the material from which the plates were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001188
EISBN: 978-1-62708-235-8
... crystalline final break (left bottom). Fig. 1 Fracture. Approx. 0.5× Chemical analysis showed that the steel composition corresponded to the Ck 35 specification according to DIN 17200. On the basis of the Brinell Hardness, found to be 153 to 154 kg/mm 2 , the strength requirement of the standard...
Abstract
A short fracture section of a forged and normalized Ck 35 (DIN 17200) steel slide showed three distinct zones: a dark colored crystalline area, an incipient crack propagating into a far advanced, rubbed fracture surface, and a fine crystalline final break. Metallographic examination showed the dark incipient crack was present before the last heat treatment and was oxidized and decarburized prior to the conclusion of the annealing process. The crack ran perpendicular to the fiber, so it was not formed before or during forging. It was a thermal stress crack produced during flame cutting of the middle section of the slide. The initial crack acted as a sharp notch favoring the formation of the fatigue fracture which lead to the failure of the slide.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001468
EISBN: 978-1-62708-221-1
... in the photograph. A specimen for microscopical examination was taken from the origin of the major crack—marked A in the illustration. The material was a mild steel in the normalised or annealed condition, having a carbon content of approximately 0.3%. Brinell hardness tests gave values of 174–179, indicative...
Abstract
In a shaft subjected to reversed torsional stresses, failure resulted from the gradual development of fatigue cracks from opposite sides of the shaft. These broke out from origins located adjacent to the fillets at the start of the square section. The remaining uncracked material which fractured at the time of the mishap was in the form of a narrow strip, situated slightly to one side of the center of the shaft. The material was a mild steel in the normalized or annealed condition, having a carbon content of approximately 0.3%. The cracking was characteristic of that resulting from torsional fatigue. Because it occurred on two different planes at 45 deg to the axis of the shaft it was due to reversals of torsional stress rather than fluctuations of unidirectional torque. Following this failure, the shafts of six other similar cranes were tested ultrasonically. Cracks to varying degree were found in all the shafts. Timely replacement was possible and the likelihood of serious accidents removed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089696
EISBN: 978-1-62708-220-4
... that the foundry used before shipping the castings consisted of casting, normalizing, preheating plus weld repair, normalizing, quenching and tempering, drawing to the required Brinell hardness, and nondestructive testing (dry magnetic particle). The crossheads were subsequently machined in-house by the customer...
Abstract
A failed crosshead of an industrial compressor was examined using optical and SEM. The crosshead was an ASTM A148 grade 105-85 steel casting. On the basis of the observations reported and available background information, it was concluded that the failure began with the initiation of cracks at slag inclusions and sharp fillets in weld-repair areas in the casting. The weld-repair procedures were unsatisfactory. The cracks propagated in a fatigue mode. he casting quality was judged unacceptable because of the presence of excessive shrinkage porosity. It was recommended that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001416
EISBN: 978-1-62708-235-8
... contributed to the failure. The Brinell hardness of the material was 163, this being equivalent to a tensile strength of approximately 36 t.p.s.i. Following the second failure, the cylinder of the third machine was examined by ultrasonic means, a crack being found in the course of development at the identical...
Abstract
Hydraulic cylinders on three identical presses failed in a similar manner after approximately ten years' service life. The cylinder was a steel casting having a carbon content of the order of 0.3 to 0.4%. During machining of the internal surfaces, a sharp corner had been left at the junction of the head with the shell. From this stress raiser a fatigue crack had developed around the entire circumference of the cylinder to give a smooth crack of annular form. The use of a flat end to the cylinder, therefore, resulted in excessive stresses being introduced at the junction of the end with the cylinder.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001089
EISBN: 978-1-62708-214-3
... steel casting was specified. The manufacturing sequence that the foundry used before shipping the castings consisted of casting, normalizing, preheating plus weld repair, normalizing, quenching and tempering, drawing to the required Brinell hardness, and nondestructive testing (dry magnetic particle...
Abstract
A failed crosshead of an industrial compressor was examined using optical and scanning electron microscope. The crosshead was an ASTM A148 grade 105-85 steel casting. On the basis of the observations reported and available background information, it was concluded that the failure began with the initiation of cracks at slag inclusions and sharp fillets in weld-repair areas in the casting. The weld-repair procedures were unsatisfactory. The cracks propagated in a fatigue mode. he casting quality was judged unacceptable because of the presence of excessive shrinkage porosity. It was recommended that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091640
EISBN: 978-1-62708-229-7
... in specimens that have been slowly (furnace) cooled through the range of 455 to 400 °C (850 to 750 °F) after aging. Brinell hardness readings along the length of the stem indicated a uniform hardness throughout. Hardness readings taken from a cross section of the stem 19 mm ( 3 4 in.) from...
Abstract
A valve stem made of 17-4 PH (AISI type 630) stainless steel, which was used for operating a gate valve in a steam power plant, failed after approximately four months of service, during which it had been exposed to high-purity water at approximately 175 deg C (350 deg F) and 11 MPa (1600 psi). The valve stem was reported to have been solution heat treated at 1040 +/-14 deg C (1900 +/-25 deg F) for 30 min and either air quenched or oil quenched to room temperature. The stem was then reportedly aged at 550 to 595 deg C (1025 to 1100 deg F) for four hours. Investigation (visual inspection, 0.7x/50x images, hardness testing, reheat treatment, and metallographic examination) supported the conclusion that failure was by progressive SCC that originated at a stress concentration. Also, the solution heat treatment had been either omitted or performed at too high of a temperature, and the aging treatment had been at too low of a temperature. Recommendations included the following heat treatments: after forging, solution heat treat at 1040 deg C (1900 deg F) for one hour, then oil quench; to avoid susceptibility to SCC, age at 595 deg C (1100 deg F) for four hours, then air cool.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001461
EISBN: 978-1-62708-224-2
... and macro-etched without revealing any untoward features. Microscopical examination showed that the material was a low carbon steel in the normalised condition; no abnormal features were observed. The Brinell hardness number of 123 indicated an ultimate tensile strength of the order of 28 t.p.s.i...
Abstract
A hook, which was marked for a safe working load of 2 tons, failed while lifting a load of approximately 35 cwts. Fracture took place at the junction of the shank with the hook portion, at which no fillet radius existed. Except for an annular region round the periphery, which was of a smooth texture, the fracture was brightly crystalline indicative of a brittle failure. Microscopic examination showed the material was a low-carbon steel in the normalized condition; no abnormal features were observed. The basic cause of failure was the presence of a fatigue crack at the change of section where the shank joined the hook portion. To minimize the possibility of fatigue cracking, it was recommended that a generous radius be provided at the change of section.
1