1-20 of 77 Search Results for

Bridges (structures)

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006833
EISBN: 978-1-62708-329-4
... and material details? This question applies not only to structural materials but also to paints and other protective coating systems. How do these compare to present standards? Has the bridge itself changed over time? Is there corrosion or physical damage through use, or have other modifications been made...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001821
EISBN: 978-1-62708-180-1
... of different details on several types of structures ( Ref 1 , 2 ). Largest Category of Cracking The largest category of cracking is a result of out-of-plane distortion in a small gap, which is usually a segment of a girder web. When distortion-induced cracking develops in a bridge component, large...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001135
EISBN: 978-1-62708-219-8
... higher than specified by the ASTM standards. The fatigue crack growth rate through this area was much faster than expected. All of these property changes resulted from increased carbon levels, higher yield strength, and larger than normal grain size. Bridges (structural) Grain size Segregation...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001588
EISBN: 978-1-62708-221-1
... ductility direction of the transition joint plate, lamellar tearing of plate material occurred at the boxed I-beam fillet weld attachment. Brittle fracture of this joint precipitated global collapse of the truss structure. Bridges (structures) Ore conveyors Structural steel Brittle fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001544
EISBN: 978-1-62708-219-8
... in the junction piece. Stresses induced during jacking (the procedure used to raise bridge components into position) applied the stresses in the critical radius that triggered the cracking. Bridges (structures) Girders Redesign Steel plate ASTM A588 ASTM A36 Brittle fracture Introduction...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001147
EISBN: 978-1-62708-219-8
... of the bridge which we shall discuss shortly. Several episodes of repair and refurbishment of the bridge have occurred. The major supporting structure, however, is pretty much as it was originally built. In the early days, the Charles River was a tidal basin at the point where the Harvard bridge spans...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001455
EISBN: 978-1-62708-234-1
... Abstract Aluminum alloy BS.1476-HE.15 by virtue of its high strength and low density finds application in the form of bars or sections for cranes, bridges, and other such structures where a reduction in dead weight load and inertia stresses is advantageous. Bars and sections in H.15 alloy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001702
EISBN: 978-1-62708-219-8
... of the expansive forces of the corrosion product. Once this happens, bridges must be either repaired or replaced. A 1993 report to congress stated that of the 575,413 bridges in the United States 44% are either structurally deficient or should be posted for weight restrictions ( 1 ). Bridges represent a liability...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001111
EISBN: 978-1-62708-214-3
... Background A catastrophic brittle fracture occurred in a welded steel trapezoidal cross-section box girder while the concrete deck of a large bridge was being poured ( Fig. 1 ). The structure consisted of two parallel bridges, each approximately 1220 m (4000 ft) long with 22 spans. The main river spans...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001600
EISBN: 978-1-62708-217-4
... Abstract This paper summarizes the results of a failure analysis investigation of a fractured main support bridge made of 7075 aluminum alloy from an army helicopter. The part, manufactured by “Contractor IT,” failed component fatigue testing while those of the original equipment manufacturer...
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
... boundary phases bridging between grains Fig. 10 Scanning electron microfractograph of crack forced open in laboratory (see Fig. 7 ). Fracture surface was etched for 2 min with “V2A etchant” at 80 °C. Evidence of formerly molten low-melting eutectic phases, probably a carbide eutectic, on grain...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006814
EISBN: 978-1-62708-329-4
... forces between two or more members. These externally applied forces have the potential to cause the second type of cracking, which is the focus of this article. Some of the cited failures come from the structural field. The field of structural engineering deals with buildings, bridges, and similar...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001656
EISBN: 978-1-62708-219-8
...,” International Association for Bridge and Structural Engineering , Proceedings of the Colloquium Fatigue of Steel and Concrete Structures , Lausanne, pp. 239 – 245 ( 1982 ). 3. Roper H. , “Investigations of Corrosion, Fatigue and Corrosion Fatigue of Concrete Reinforcement,” National Association...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003512
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the structural design process and discusses the life-limiting factors, including material defects, fabrication practices, and stress. It details the role of a failure investigator in performing nondestructive inspection. The article provides...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... of Shafts” in this Volume. Materials for Bridges and Cranes The use of a steel having a high impact resistance at low temperatures is required for the prevention of brittle fracture of structures, especially welded ones that are subjected to cold-temperature conditions in service. Use of a fine...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006802
EISBN: 978-1-62708-329-4
... Abstract Life assessment of structural components is used to avoid catastrophic failures and to maintain safe and reliable functioning of equipment. The failure investigator's input is essential for the meaningful life assessment of structural components. This article provides an overview...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... used in the design and manufacture of structural components: steel, aluminum, and titanium. Steel, the most commonly used structural alloy, is used in ships, buildings, bridges, automobiles, pressure vessels, and aircraft to name but a few. Aluminum is increasingly being used in automobiles...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003526
EISBN: 978-1-62708-180-1
... application of FEA is in the determination of displacement and stress profiles in structures. Bending beams, rotating disks, pressure vessels, buildings and bridges, airplanes and automobiles, and heart valves and hip joints are all analyzed using FEA structural analysis techniques. This structural analysis...