1-20 of 68 Search Results for

Brazed joints

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006828
EISBN: 978-1-62708-329-4
... of the material, joint design, prebraze cleaning, brazing procedures, postbraze cleaning, and quality control. Factors that must be considered include brazeability of the base metals; joint design and fit-up; filler-metal selection; prebraze cleaning; brazing temperature, time, atmosphere, or flux; conditions...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001439
EISBN: 978-1-62708-235-8
... Abstract Persistent leakage was experienced from copper tube heaters which formed part of dairy equipment. Metallurgical examination of the brazed joints showed them to have suffered a preferential corrosion attack. This resulted in the phosphide phase of the brazing alloy being corroded away...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047745
EISBN: 978-1-62708-235-8
... Abstract A 321 stainless steel radar coolant-system assembly fabricated by torch brazing with AWS type 3A flux, failed at the brazed joint when subjected to mild handling before installation, after being stored for about two years. It was revealed by visual examination of the failed braze...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047749
EISBN: 978-1-62708-235-8
... of the brazed joint. The presence of multiple origin cracks was indicated on the inside surface of a fractured portion of the crack surface. The cracks had originated adjacent to the braze joining the tube and the reinforcing liner and propagated through the wall to the outer surface. The residues on the inner...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047753
EISBN: 978-1-62708-235-8
... Abstract A pressure probe assembly comprised of type 347 stainless steel housing, brazed with AMS 4772D filler metal to the pressure probe, failed due to detachment of a rectangular segment from the housing. The presence of a large brazing metal devoid region in the pressure probe-housing joint...
Image
Published: 30 August 2021
Fig. 5 Copper tubing braze joint cracking. (a) Carbon steel fitting end of the tube showing the fracture surface and a silver-colored drip mark on the tube. Original magnification: 10×. (b) Fine cracks observed in the tube associated with the drip mark. Original magnification: 20×. (c More
Image
Published: 15 January 2021
Fig. 30 Braze joint failure (Example 17). (a) Schematic of failed end of expansion joint braze where an intermetallic phase formed. (b) Cross section showing the intermetallic layer (arrow). Original magnification: 15×. (c) Cracked intermetallic phase between the copper braze (top More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047756
EISBN: 978-1-62708-235-8
... Abstract Waspaloy (AMS 5586) fabricated inner ring of a spray-manifold assembly failed transversely through the manifold tubing at the edge of the tube and support sleeve brazed joint. The assembly was brazed with AWS BAu-4 filler metal (AMS 4787). Fatigue beach marks propagating from...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001312
EISBN: 978-1-62708-215-0
... was attributed to insufficient component thickness, which made the dashpot unable to withstand internal operating pressure, and to extensive annealing in the heat-affected zones of the brazed joints. It was recommended that the condenser dashpot design take into account the annealing effects of brazing...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0006440
EISBN: 978-1-62708-234-1
.... It was concluded that corrosion attack sufficiently weakened the base material and the brazed joints, allowing catastrophic failure of the mirror due to the pressure of the cooling water. It was recommended that the mirrors be cleaned of all corrosion products present as a result of past service conditions...
Image
Published: 30 August 2021
Fig. 3 Type 347 stainless steel pressure-probe housing that failed by fatigue fracture because of voids in a brazed joint. (a) Photograph of opening produced in housing by detachment of a segment at time of fracture. Original magnification: 5¼×. Large region indicated by arrows is devoid More
Image
Published: 01 June 2019
Fig. 1 Type 347 stainless steel pressure-probe housing that failed by fatigue fracture because of voids in a brazed joint. (a) Photograph of opening produced in housing by detachment of a segment at time of fracture. 5 1 4 ×. Large region indicated by arrows is devoid of braze metal More
Image
Published: 01 June 2019
Fig. 1 Segments of a type 321 stainless steel radar coolant-system assembly that broke at a brazed joint between a bellows and a cup because of inadequate bonding between the brazing alloy and the stainless steel. (a) Portions of the broken coolant-system assembly; bellows is at A, cup at B More
Image
Published: 30 August 2021
Fig. 1 Segments of a type 321 stainless steel radar coolant-system assembly that broke at a brazed joint between a bellows and a cup because of inadequate bonding between the brazing alloy and the stainless steel. (a) Portions of the broken coolant-system assembly; bellows is at A, cup at B More
Image
Published: 01 June 2019
Fig. 1 Waspaloy (AMS 5586) spray-manifold tube that failed by fatigue fracture because of embrittlement by penetration of molten braze metal. (a) Macrograph showing fracture at the edge of the brazed joint between the tube and the sleeve. 4×. (b) Fractograph showing granular, discolored region More
Image
Published: 30 August 2021
Fig. 4 Waspaloy (AMS 5586) spray-manifold tube that failed by fatigue fracture because of embrittlement by penetration of molten braze metal. (a) Macrograph showing fracture at the edge of the brazed joint between the tube and the sleeve. Original magnification: 4×. (b) Fractograph showing More
Image
Published: 01 December 1993
Fig. 12 Discontinuity stresses developed in the dashpot as a result of the differential deformation of the HAZs of two brazed joints More
Image
Published: 01 December 1993
Fig. 7 Results of in situ metallographic examination. (a) Grain size variations in the lower tubular portion. (b) Grain size variations in the HAZ of the upper brazed joint More
Image
Published: 01 December 1993
Fig. 10 Deformation behavior of tensile test specimens taken from the HAZ of the upper brazed joint as well as the undeformed region of the lower tubular portion. The deformation behavior of an annealed copper specimen with an average grain size of 0.08 mm is included for comparison. More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047720
EISBN: 978-1-62708-217-4
.... The weldments were finally secured to the bases of the turbine blades by a brazing operation. One of the laser beam attachment welds broke after a 28-h engine test run. Exposure of the fracture surface for study under the electron microscope revealed the joint had broken in stress rupture. Failure was caused...