Skip Nav Destination
Close Modal
By
Cassio Barbosa, Simone Kessler de Barros, Ibrahim de Cerqueira Abud, Joneo Lopes do Nascimento, Sheyla Santana de Carvalho
Search Results for
Boiler plate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 86 Search Results for
Boiler plate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 11 Creep-induced failure of a boiler plate. (a) A polished cross section of the plate that shows necking, a feature of short-term creep. 2×. (b) Intergranular voids (dark areas) in an area near the fracture surface. Courtesy of B. Gabriel, Packer Engineering Associates, Inc.
More
Image
Published: 15 January 2021
Fig. 6 Photographs of boiler plates exhibiting caustic stress-corrosion cracking (arrows). Source: Ref 5
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001175
EISBN: 978-1-62708-231-0
... Abstract A water tube boiler with two headers and 15.5 atm working pressure became leaky in the lower part due to the formation of cracks in the rivet-hole edges. The boiler plate of 20 mm thickness was a rimming steel with 0.05% C, traces of Si, 0.38% Mn, 0.027% P, 0.035% S, and 0.08% Cu...
Abstract
A water tube boiler with two headers and 15.5 atm working pressure became leaky in the lower part due to the formation of cracks in the rivet-hole edges. The boiler plate of 20 mm thickness was a rimming steel with 0.05% C, traces of Si, 0.38% Mn, 0.027% P, 0.035% S, and 0.08% Cu. The mean value of the yield point was 24 (24) kg/sq mm, the tensile strength 39 (38) kg/sq mm, the elongation at fracture, d10, 26 (24)%, the necking at fracture 71 (66)% and notch impact value 11.5 (9.4) kgm/sq cm (the values in brackets are for the transverse direction). The specimen from inside surface of the boiler was polished and etched with Fry-solution, which revealed parallel striations formed due to the cold bending of the plate. The zones of slip were concentrated around the rivet holes. The cracks were formed here. The structure examination proved that the cracks had taken an exactly intercrystalline path, which is characteristic for caustic corrosion cracks. It was recommended that the internal stresses be removed through annealing or alternatively lye-resistant steel should be used.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001448
EISBN: 978-1-62708-229-7
..., embrittlement of this type was the primary cause of the breaking off of the type rivet heads. Nothing was observed in the course of the examination that suggested caustic cracking. Aging Boiler plate Rivets Rimming steel Brittle fracture When the lagging was removed from the longitudinal seam...
Abstract
Rivets from the longitudinal seam of the terminal shell ring of a 12 year old Lancashire boiler broke off easily during examination. Cleavage fractures indicated a brittle material. Microstructure of a sectioned rivet head was typical of a normal rimming steel except the ferrite crystals contained numerous nitride needles. Their existence indicated an abnormally high nitrogen content. If such a steel is heated for a lengthy period to a temperature of that prevailing in a boiler, precipitation of the nitrides may be expected, with consequent embrittlement. In this case, embrittlement of this type was the primary cause of the breaking off of the type rivet heads. Nothing was observed in the course of the examination that suggested caustic cracking.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001141
EISBN: 978-1-62708-227-3
... Abstract During a refit of a twenty-year-old Naval destroyer, two cracks were found on the inside of the killed carbon-manganese steel hull plate at the forward end of the boiler room. The cracks coincided with the location of the top and bottom plates of the bilge keel. Metallurgical...
Abstract
During a refit of a twenty-year-old Naval destroyer, two cracks were found on the inside of the killed carbon-manganese steel hull plate at the forward end of the boiler room. The cracks coincided with the location of the top and bottom plates of the bilge keel. Metallurgical examination of sections cut from the cracked area identified lamellar tearing as the principle cause of the cracking. This was surprising in 6 mm thick hull plates. Corrosion fatigue and general corrosion also contributed to hull plate perforation. Although it is probable that more lamellar tears exist near the bilge keel in other ships and may be a nuisance in the future, the hull integrity of the ships is not threatened and major repairs are not needed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001393
EISBN: 978-1-62708-230-3
..., as it is extremely difficult to maintain the tightness of riveted seams under these conditions. Such vessels are now almost exclusively of all-welded construction Accumulators Boiler plate Fillet welds Optical microscopy Riveting Sealing Steel Corrosion fatigue Joining-related failures...
Abstract
Three examples of corrosion-fatigue cracking from the toes of substantial fillet welds applied to seal-leaking riveted seams in steam accumulators are described. In the first case, this practice resulted in a disastrous explosion; in the second, which involved two identical vessels at the same location, cracking in course of development was discovered during internal inspection. Microscope examination of several specimens cut to intersect a crack showed it to be typical of corrosion-fatigue; it was in the form of a broad fissure, contained oxide deposits, and the termination was blunt-ended. The two cases not only serve to illustrate the danger of applying fillet welds to seal the lap edges of riveted seams, but point to the inadvisability of employing riveted construction for vessels intended for service under conditions involving frequent pressure and thermal fluctuations, as it is extremely difficult to maintain the tightness of riveted seams under these conditions. Such vessels are now almost exclusively of all-welded construction
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001567
EISBN: 978-1-62708-230-3
... Abstract A falling film black liquor evaporator consisted of flat twin plate heat exchangers and was used to increase black liquor solids content prior to its burning in the recovery boiler. Several plate heat exchangers were fabricated of AISI type 316L stainless steel by electric resistance...
Abstract
A falling film black liquor evaporator consisted of flat twin plate heat exchangers and was used to increase black liquor solids content prior to its burning in the recovery boiler. Several plate heat exchangers were fabricated of AISI type 316L stainless steel by electric resistance welding. Cracks initiated at the inside surface of the welded areas and penetrated through the wall thickness. In several locations, the weld fractured and the plates separated with significant spring back, indicative of high residual stresses attributed to fabrication and weld procedures. The cracks had extended radially from the electric resistant weld into the base metal. Metallographic examination revealed the cracks were transgranular and branching, characteristic of SCC in austenitic stainless steels. The fracture surfaces had a brittle cleavage-like appearance, typical of SCC in austenitic stainless steels. Chlorides in the service environment were a contributory factor. The primary factor causing SCC localized at the electric resistant welds was substantial residual stresses as a result of fabrication procedures. It was recommended that the heat exchanger plates be subjected to stress-relief heat treatment following fabrication and welding.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001450
EISBN: 978-1-62708-231-0
... Abstract A locomotive type boiler was fitted with a copper firebox of orthodox construction. Flanged tube- and firehole-plates were attached to a wrapper plate by means of copper rivets. Shortly after it was put into service the fireside heads of a number of rivets broke off at different parts...
Abstract
A locomotive type boiler was fitted with a copper firebox of orthodox construction. Flanged tube- and firehole-plates were attached to a wrapper plate by means of copper rivets. Shortly after it was put into service the fireside heads of a number of rivets broke off at different parts of the seams. By the time the investigation was begun a total of fifty heads had broken off. Repairs had been effected from time to time by fitting screwed rivets, none of which gave trouble in service. Microscopic examination confirmed the fracture path to be wholly intergranular. In the region of the fracture the grain boundaries were delineated as a near-continuous network of cavities and films of oxide. It was evident that the failure of the rivets in service was attributable to intergranular weakness in the material due to gassing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001422
EISBN: 978-1-62708-229-7
... which originated at a zone containing defects introduced at the time of manufacture. These may have had their origin in the ingot from which the plate was rolled or, alternatively, be indicative of a zone which suffered overheating and local burning at the time the forge weld was made. Boilers...
Abstract
During a hydraulic test on one of the boilers in a range, leakage occurred from the lower surface of a horizontal S bend in the main steam pipe between the drum connector box and the junction valve. The pipe in question was 15 in. bore and had been in service for about 50 years. Specimens were prepared for microscopical examination to include the defective zone and a section through a circumferential crack. The defective zone was found to contain numerous inclusions of slag and oxides of globular form. Regions surrounding the inclusions were decarburized, the indications being that this region of the plate had been heated to an excessively high temperature. A corrosion-fatigue fissure was at one location, this having originated at the internal surface of the pipe and run into an inclusion in the defective zone. The failure resulted from the development of corrosion-fatigue fissures which originated at a zone containing defects introduced at the time of manufacture. These may have had their origin in the ingot from which the plate was rolled or, alternatively, be indicative of a zone which suffered overheating and local burning at the time the forge weld was made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001477
EISBN: 978-1-62708-229-7
... Abstract During the routine hydraulic pressure test of a boiler following modification, failure by leakage from the drum took place and was traced to a region where extensive multiple cracking had occurred. Catastrophic rupture or fragmentation of the vessel fortunately did not take place...
Abstract
During the routine hydraulic pressure test of a boiler following modification, failure by leakage from the drum took place and was traced to a region where extensive multiple cracking had occurred. Catastrophic rupture or fragmentation of the vessel fortunately did not take place. Prior to the test, cracking was present already, extending up to 90% of the wall thickness. Analyses of brownish deposit material did not reveal the presence of any substances likely to cause stress-corrosion cracking of a Ni-Cu-Mo low-alloy steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001010
EISBN: 978-1-62708-229-7
... component. In this particular case, control of dissolved solids in the boiler feedwater may have been inadequate. Steam collectors Superheaters Carbon steel Pitting corrosion Stress-corrosion cracking Figure 1 shows the arrangement of the outlet from a superheater in a generator producing...
Abstract
A superheater in a generator produced 80 t/h of steam at 400 deg C and 41 kPa. Failure took place at the connection from the collector to the vent line used during start up. The material of construction was carbon steel, and the unit had 240,000 h of operation at the time of failure, with 99 shutdowns. Widespread cracking on the inside was apparent, the most severe cracking being some distance from the nozzle connection in a downstream direction. Widespread cracking and pitting were observed also at the connections to the safety valve and soot blower. Pitting was most apparent on the downstream sides of the openings in the shell. In all the damaged areas the mechanism of failure involved surface pitting and subsequent SCC. This failure showed the problems that can develop where there are long lines in which condensation may occur and return periodically to a superheater or other hot component. In this particular case, control of dissolved solids in the boiler feedwater may have been inadequate.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001392
EISBN: 978-1-62708-231-0
... Abstract Following leakage which developed within the furnace of a horizontal multi-tubular type boiler, examination revealed a series of cracks adjacent to the stiffening rings in the first plain furnace ring. The fire-side surface of the sample was coated with a layer of oxide scale...
Abstract
Following leakage which developed within the furnace of a horizontal multi-tubular type boiler, examination revealed a series of cracks adjacent to the stiffening rings in the first plain furnace ring. The fire-side surface of the sample was coated with a layer of oxide scale. Microscopical examination of sections through the cracks showed them to be filled with oxide and to be of the multi-branched type, having blunt terminations. The general nature of the cracks was characteristic of cracking from thermal or corrosion fatigue, as results from the operation of varying stresses in an oxidizing or corrosive environment. The cracking in this particular case was due principally to the inordinately large gap between the components. Additionally, several of the sealing welds of the tubes to the back tube plate were cracked in a radial manner, and it would appear that in addition, abnormal thermal conditions may well have been experienced intermittently in service.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001083
EISBN: 978-1-62708-214-3
... Abstract Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two alternatives...
Abstract
Copper alloy (C83600) impellers from two different feed pumps that supplied water to a 2-year-old boiler failed repeatedly. Examination by various methods indicated that the failures were caused by sulfide attack that concentrated in shrinkage voids in the castings. Two alternatives to prevent future failures were recommended: changing the impeller composition to a cast stainless steel, or implementing stricter nondestructive evaluation requirements for copper alloy castings.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001321
EISBN: 978-1-62708-215-0
... Abstract Tube failures occurred in quick succession in two boiler units from a bank of six boilers in a refinery. The failures were confined to the SAE 192 carbon steel horizontal support tubes of the superheater pack. In both cases, the failure was by perforation adjacent to the welded fin...
Abstract
Tube failures occurred in quick succession in two boiler units from a bank of six boilers in a refinery. The failures were confined to the SAE 192 carbon steel horizontal support tubes of the superheater pack. In both cases, the failure was by perforation adjacent to the welded fin on the crown of the top tubes and located in an area near the upward bend of the tube. The inside of all the tubes were covered with a loosely adherent, black, alkaline, powdery deposit comprised mainly of magnetite. The corroded areas, however, had relatively less deposit. The morphology of the corrosion damage was typical of alkaline corrosion and confirmed that the boiler tubes failed as a result of steam blanketing that concentrated phosphate salts. The severe alkaline conditions developed most probably because of the decomposition of trisodium phosphate, which was used as a water treatment chemical for the boiler feed water.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001433
EISBN: 978-1-62708-235-8
... Abstract On attempting to manipulate or bend a boiler tube some 22 ft. long, sudden failure occurred at what appeared to be a butt weld in the tube. Externally, the weld reinforcement had been ground flush and the entire tube surface painted. Internally, the appearance and width of the heated...
Abstract
On attempting to manipulate or bend a boiler tube some 22 ft. long, sudden failure occurred at what appeared to be a butt weld in the tube. Externally, the weld reinforcement had been ground flush and the entire tube surface painted. Internally, the appearance and width of the heated band suggested that the weld had been made by the oxy-gas process. A lack of root fusion over most of its length was evident. Examination of the fracture faces, which were of crystalline appearance indicative of brittle behavior, indicated incomplete fusion of the weld root. Microscopic examination showed the deposit to possess a large grain size with a low carbon content disposed as carbides along the grain boundaries, a feature which would provide an explanation of the brittle behavior. Subsequent inspection showed that this tube was one of several of the batch ordered for retubing of a boiler and which had a 2 ft. length welded to one end to make up the length.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001406
EISBN: 978-1-62708-229-7
... greater than this can develop. In riveted boilers and drums where failure from this cause has been almost exclusively found, the necessary concentration can occur in the voids between plates forming a lap seam, between rings or at butt joints. Ingress of water takes place through the caulked inside edge...
Abstract
Caustic cracking is the term used to describe one of the forms in which stress-corrosion cracking manifests itself in carbon steels. In the present study, persistent leakage occurred after ten weeks of service from tube expansions in the steam and mud drum of a two-drum D type boiler, which failed to respond to repeated expansion. The leakage was traced to circumferential cracking in the portion of Fe-0.11C-0.46Mn-0.018S-0.011P tubes within the expanded region. Microscopic examination indicated that all cracks started from the outer surface of the tubes in the expanded portion. The form of cracking which was mostly intergranular. Examination at higher magnification disclosed that a selective attack had taken place on the carbide constituents of the pearlite grains. An alkaline deposit on the fireside surface of the tube resulted from the evaporation of boiler water which had found its way past the tube expansions. This indicated that this operation had not resulted in a satisfactorily tight joint.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001694
EISBN: 978-1-62708-222-8
... Boiler and Pressure Vessel Code, Section XI, Article A-4000 (1983). 2. Le May I. , in Microstructural Science , Volume 10 , White W. E. , Richardson J. H. , and McCall J. L. , eds., p. 195 , Elsevier , New York ( 1982 ). 3. Tank Inspection, Repair, Alterations...
Abstract
The outer tube, or stem, on a bicycle frame fractured after two years of use. Detailed investigation revealed that the lower stem bearing had been loose for some time and the bottom bearing cup contained many cracks. Metallographic examination of the chromium-plated cup confirmed the brittle nature of the cracks, located along prior austenite boundaries. The failure was attributed to hydrogen embrittlement due to improper manufacturing procedures following chromium plating. The cracking led to looseness in the bearing and consequent scoring, cracking, and overloading of the stem.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048777
EISBN: 978-1-62708-229-7
... Abstract A 150 cm ID boiler drum made form ASTM A515, grade 70, steel failed during final hydrotesting at a pressure of approximately 26 MPa. Brittle fractures were revealed in between two SA-106C nozzles and remainder was found to involve tearing. Short, flat segments of fracture area...
Abstract
A 150 cm ID boiler drum made form ASTM A515, grade 70, steel failed during final hydrotesting at a pressure of approximately 26 MPa. Brittle fractures were revealed in between two SA-106C nozzles and remainder was found to involve tearing. Short, flat segments of fracture area, indicative of pre-existing cracks, were revealed by examination of the fracture surface at the drain grooves arc gouged at the nozzle sites. A thin layer of material with a dendritic structure was observed at the groove surface. The dendritic layer was revealed by qualitative microprobe analysis to contain over 1% C, higher than the carbon content of the base metal. The cracks in the drain groove surface could have occurred after arc gouging, during subsequent stress-relieving, or during the hydrostatic test. Flame cutting is not recommended for the type of steel used in the boiler drum because it can lead to local embrittlement and stress raisers, potentially initiating major failures.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001479
EISBN: 978-1-62708-229-7
... to be present in internal scales and deposits, the metal resulting from the corrosion and/or erosion of pre-boiler equipment condenser tubes and tube plates, feed pump impellers and casings. Molten copper — along with other metals in the liquid state — is able to penetrate solid steel along the grain boundaries...
Abstract
Several ruptures took place in the front wall tubes of a water tube boiler. Some rupture samples showed ductile failure while others showed brittle failure. Specimens taken from the rupture where a thick edge had been produced, i.e., with little evidence of prior plastic deformation, showed a coarse microstructure indicative of gross overheating. The examination indicated that failure in the main resulted from gross overheating arising from water starvation as could have been due to a number of causes. The ruptures in some tubes were of the type commonly found in overheated tubes, the material being drawn out to a feather edge at the time of rupture. Other ruptures in the same and other tubes were of a more brittle type, this being associated with penetration of material by molten copper derived from scale.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001791
EISBN: 978-1-62708-241-9
... Abstract A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight...
Abstract
A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight into what caused the pipe to rupture. Although the pipe had been replaced just 50 h before the accident, the analysis revealed incrustations and corrosion pits on the inner walls and oxidation on the outer walls. Microstructural changes were also observed, indicating that the steel was exposed to high temperatures. The combined effect of pitting, incrustations, and phase transformations caused the pipe to rupture.
1