Skip Nav Destination
Close Modal
Search Results for
Blanking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 60 Search Results for
Blanking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 25 Failed chromium-plated blanking die made from AISI A2 tool steel. (a) Cracking (arrows) that occurred shortly after the die was placed in service. (b) Cold-etched (10% aqueous nitric acid) disk cut from the blanking die (outlined area) revealing a light-etching layer. Actual size. (c
More
Image
Published: 01 January 2002
Fig. 2 Sharp corners in the two large countersunk holes of blanking die of manganese oil-hardening steel caused cracking. The excessive section change caused by aligning small and large holes emphasizes need for redesign.
More
Image
Published: 30 August 2021
Fig. 25 Failed chromium-plated blanking die made from AISI A2 tool steel. (a) Cracking (arrows) that occurred shortly after the die was placed in service. (b) Cold-etched (10% aqueous nitric acid) disk cut from the blanking die (outlined area) revealing a light-etching layer. Actual size. (c
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001663
EISBN: 978-1-62708-236-5
... Abstract Personnel responsible for laboratory protection at some plants are required to participate in exercises simulating a breach of security at the site. This document reports a metallurgical investigation of blank firing adapters (BFA), one of which exploded during such a training exercise...
Abstract
Personnel responsible for laboratory protection at some plants are required to participate in exercises simulating a breach of security at the site. This document reports a metallurgical investigation of blank firing adapters (BFA), one of which exploded during such a training exercise. Determination of the cause of the explosion was the primary objective of the examination. Metallographic studies included the examination of BFAs fabricated from two different types of alloys that were tested for shock reaction. Optical microscopy supported by electron microscopy and analytical methods were used. Our investigation supports the supposition that a live round of ammunition was inadvertently fired.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001302
EISBN: 978-1-62708-215-0
... and coalesced during service. Consideration of the manufacturing process suggested that the cracks were the result of overheating of the kingpin blanks prior to forging, which was exacerbated during forging by deformation heating in the highly-strained region. This view was supported by results of two types...
Abstract
To forged AISI 4140 steel trailer kingpins fractured after 4 to 6 months of service. Fractographic and metallographic examination revealed that cracks were present in the spool-flange shoulder region of the defective kingpins prior to installation on the trailers. The cracks grew and coalesced during service. Consideration of the manufacturing process suggested that the cracks were the result of overheating of the kingpin blanks prior to forging, which was exacerbated during forging by deformation heating in the highly-strained region. This view was supported by results of two types of tensile tests conducted near the incipient melting temperature at the grain boundaries. All kingpins made by the supplier of the fractured ones were ultrasonically inspected and six more anticipated to fail were found. It was recommended that the heating of forging blanks be more carefully controlled, especially with respect to the accuracy of the optical pyrometer temperature readout. Also, procedures must be developed such that forging blanks that trigger the over-temperature alarm are reliably and permanently removed from the production line.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048156
EISBN: 978-1-62708-235-8
... Abstract A 6150 flat spring was found to be failed. The face of the spring was revealed to be under tensile stress. The failure was concluded to have begun at the dark spot on the edge where roughness resulted from shearing during the blanking operation. Blanking Roghness Tensile stress...
Abstract
A 6150 flat spring was found to be failed. The face of the spring was revealed to be under tensile stress. The failure was concluded to have begun at the dark spot on the edge where roughness resulted from shearing during the blanking operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048120
EISBN: 978-1-62708-225-9
... Abstract The pawl spring which was part of a selector switch used in telephone equipment failed. The springs were blanked from 0.4 mm (0.014 in.) thick tempered 1095 steel and then nickel plated. Numerous pits around the rivet holes were revealed by microscopic examination of longitudinal...
Abstract
The pawl spring which was part of a selector switch used in telephone equipment failed. The springs were blanked from 0.4 mm (0.014 in.) thick tempered 1095 steel and then nickel plated. Numerous pits around the rivet holes were revealed by microscopic examination of longitudinal specimens. Delaminations that were formed at inclusion sites during punching of the rivet holes and that were filled with nickel during the plating operation were revealed by microscopic examination of the rivet hole. These delaminations were interpreted to have acted as stress raisers and initiated the fracture. Long, narrow sulfide stringers which were the probably the cause of delamination in this spring material were revealed in the raw material used to make the springs. It was concluded that fracture of the springs was caused by fatigue that had originated at delaminations around the rivet holes.
Image
Published: 01 June 2019
Fig. 8 Edge structure of a file blank, which remained too soft during hardening. Cross section, etched in nital. 100 ×
More
Image
in Metallurgical Examinations of a Fragmented Blank Firing Adapter and Associated Components from an M-16 Rifle
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 1 M-16 rifle with blank firing adapter (BFA) in position. Close-up of BFA is shown in inset photograph. The rifle is shown with the magazine removed.
More
Image
in Metallurgical Examinations of a Fragmented Blank Firing Adapter and Associated Components from an M-16 Rifle
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 2 Press announcement of the explosion of a blank firing adapter and subsequent injury to a member of the security personnel (Knoxville, TN. News-Sentinel, August 19, 1983).
More
Image
in Metallurgical Examinations of a Fragmented Blank Firing Adapter and Associated Components from an M-16 Rifle
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 3 A normal blank firing adapter (BFA). The component identified as the nut is screwed on to the barrel of the rifle.
More
Image
in Metallurgical Examinations of a Fragmented Blank Firing Adapter and Associated Components from an M-16 Rifle
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 6 Microstructure of blank firing adapter (ORNL-1), fragment S, Figure 4 . Note many of the carbides exhibit cracks which could have resulted from an impact.
More
Image
in Metallurgical Examinations of a Fragmented Blank Firing Adapter and Associated Components from an M-16 Rifle
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 11 Comparison of lengths of normal and deep-seated projectiles and a blank cartridge for an M-16 rifle.
More
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001326
EISBN: 978-1-62708-215-0
... of the CaO was determined to be slag entrapment during the steel making process. It was recommended that the thermowell blanks be ultrasonically tested prior to machining and that the design be modified to make internal pressurization possible. Leakage Nonmetallic inclusions Nuclear reactor...
Abstract
Pressure testing of a batch of AISI type 316L stainless steel thermowells intended for use in a nuclear power-plant resulted in the identification of leakage at the tips in 20% of the parts. Radiography at the tip region of representative thermowells showed linear indications along the axes. SEM examination revealed the presence of longitudinally oriented nonmetallic inclusions that were partly retained and partly dislodged. Electron-dispersive x-ray analysis indicated that the inclusions were composed of CaO. Based on the overall chemistry of the inclusion sites, the source of the CaO was determined to be slag entrapment during the steel making process. It was recommended that the thermowell blanks be ultrasonically tested prior to machining and that the design be modified to make internal pressurization possible.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091538
EISBN: 978-1-62708-233-4
... Abstract Electrical contact-finger retainers blanked and formed from annealed copper alloy C65500 (high-silicon bronze A) failed prematurely by cracking while in service in switchgear aboard seagoing vessels. In this service they were sheltered from the weather but subject to indirect exposure...
Abstract
Electrical contact-finger retainers blanked and formed from annealed copper alloy C65500 (high-silicon bronze A) failed prematurely by cracking while in service in switchgear aboard seagoing vessels. In this service they were sheltered from the weather but subject to indirect exposure to the sea air. About 50% of the contact-finger retainers failed after five to eight months of service aboard ship. Investigation (visual inspection, 250x images etched with equal parts NH4OH and H2O2, emission spectrographic analysis, and stereoscopic views) supported the conclusion that the cracking was produced by stress corrosion as the combined result of: residual forming and service stresses; the concentration of tensile stress at outer square corners of the pierced slots; and preferential corrosive attack along the grain boundaries as a result of high humidity and occasional condensation of moisture containing a fairly high concentration of chlorides (seawater typically contains about 19,000 ppm of dissolved chlorides) and traces of ammonia. Recommendations included redesign of the slots, shot-blasting the formed retainers, and changing the material to a different type of silicon bronze-copper alloy C64700.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006801
EISBN: 978-1-62708-329-4
... in understanding both necking and splitting. Splits typically open between 0 and 45° to the direction of load application, but this is complicated by complex blank and part shapes, die process, and metal flow. Splits are not found on critical radii but instead can be seen at the tangent point between the radii...
Abstract
Sheet forming failures divert resources from normal business activities and have significant bottom-line impact. This article focuses on the formation, causes, and limitations of four primary categories of sheet forming failures, namely necks, fractures/splits/cracks, wrinkles/loose metal, and springback/dimensional. It discusses the processes involved in analytical tools that aid in characterizing the state of a formed part. In addition, information on draw panel analysis and troubleshooting of sheet forming failures is also provided.
Image
in The Effects of Sulfide Inclusions on Mechanical Properties and Failures of Steel Components
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 3 Manganese sulfide inclusions on a plane of ductile overload perpendicular to the rolling direction. The inclusions are not symmetric since the original rolled blank was used in a later forging operation
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001576
EISBN: 978-1-62708-219-8
... in question are connected directly to the rotor. The motor is fixed firmly with screws on 300 × 600 × 700 mm steel casing ( Fig. 1 ). The rated rotation speed is 1, 750 rpm. Blades are of the shape as shown in Fig. 2(a) and are blanked from coldrolled steel sheet. As shown in Fig. 3 , both ends...
Abstract
Macrofractographs of the fracture surface from a multibladed fan showed that cracks started at the corner where bending stress was concentrated and propagated through the blade by fatigue. Peak stress at the monitoring position was less than 10 MPa. To simulate crack growth, the rotor was repeatedly deformed by a hydraulic fatigue tester. Comparison of striations of the failed blade with that of the tested one revealed the failed blade was loaded with more than 30 MPa of stress. These tests confirmed that the rotor and blades had sufficient strength to withstand up to 3x the stress of normal operation. The casing of the fan was vibrated at 10 to 60 Hz. Peak stress easily overcame 30 MPa, which was enough to initiate cracking. The fracture surfaces and starting position were the same as those on the failed fan. It was concluded that the exciting force from an air compressor caused blade failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047165
EISBN: 978-1-62708-217-4
.... The forging defects may have been the result of any of the following factors, singly or in combination: The forging blank contained more than the optimum volume of metal in the flange area The forging blank contained less than the optimum volume of metal in the flange area, resulting in an underfill...
Abstract
Two outboard main-wheel halves (aluminum alloy 2014-T6 forged) from a commercial aircraft were removed from service because of failure. One wheel half was in service for 54 days and had made 130 landings (about 1046 roll km, or 650 roll mi) when crack indications were discovered during eddy-current testing. The flange on the second wheel half failed after only 31 landings, when about 46 cm (18 in.) of the flange broke off as the aircraft was taxiing. Stains on the fracture surfaces were used to determine when cracking was initiated. The analysis (visual inspection, liquid penetrant inspection, and micrographs with deep etching in aqueous 20% sodium hydroxide) supported the conclusion that failure on both wheel halves was by fatigue caused by a forging defect resulting from abnormal transverse grain flow. The crack in the first wheel half occurred during service, and the surfaces became oxidized. Because the fracture surface of the second wheel half had chromic acid stains, it was obvious that the forging defect was open to the surface during anodizing. No recommendations were made except to notify the manufacturer.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0009222
EISBN: 978-1-62708-180-1
...-hardened tools can tolerate some features that are improper for liquid quenching. Design must take into account the equipment available for heat treatment and for subsequent grinding. The designer must also correctly evaluate service conditions. For example, a blanking die for making paper gaskets may...
Abstract
This article describes the six fundamental factors that decide a tool's performance. These are mechanical design, grade of tool steel, machining procedure, heat treatment, grinding, and handling. A deficiency in any one of the factors can lead to a tool and die failure. The article presents a seven-step procedure to be followed when looking for the reason for a failure. A review of the results of the seven-point investigation may lead directly to the source of failure or narrow the field of investigation to permit the use of special tests.
1