Skip Nav Destination
Close Modal
By
Cassio Barbosa, Simone Kessler de Barros, Ibrahim de Cerqueira Abud, Joneo Lopes do Nascimento, Sheyla Santana de Carvalho
Search Results for
Basic oxygen furnaces
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 47 Search Results for
Basic oxygen furnaces
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0065826
EISBN: 978-1-62708-233-4
... Abstract The wires used in a wet precipitator for cleaning the gases coming off a basic oxygen furnace failed. The system consisted of six precipitators, three separate dual units, each composed of four zones. Each zone contained rows of wires (cold drawn AISI 1008 carbon steel) suspended...
Abstract
The wires used in a wet precipitator for cleaning the gases coming off a basic oxygen furnace failed. The system consisted of six precipitators, three separate dual units, each composed of four zones. Each zone contained rows of wires (cold drawn AISI 1008 carbon steel) suspended between parallel collector plates. It was determined that the 1008 wires failed because of corrosion fatigue. It was decided to replace all of the wires in the two zones with the highest rates of failure with cold-drawn type 304 austenitic stainless steel wire. These expensive wires, however, failed after a week by transgranular SCC. Annealed type 430 ferritic stainless steel was subsequently suggested to prevent further failures.
Image
in Failure Analysis Leading to Improved Materials Selection for Precipitator Wires in a Basic Oxygen Furnace
> ASM Failure Analysis Case Histories: Design Flaws
Published: 01 June 2019
Fig. 1 Precipitator wires from a basic oxygen furnace. (a) Original AISI 1008 carbon steel wire, wrapped around an insulator spool and fastened with a ferrule made from type 430 ferritic stainless steel. One ferrule has been removed. (b) Close-up view showing the fractured wire face inside
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
... Abstract An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon...
Abstract
An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon, carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed that the brittle oxides that formed stringers were alumina, and the other macroinclusions were complex silicates. Both the alumina and silicate inclusions were deleterious to contact-fatigue properties. Microstructurally, the carburized regions of the broken roller and of inner-race samples contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller fracture surface revealed striations indicative of fatigue, and EDS analyses corroborated a high incidence of silicate inclusions at crack sites. The study suggests that the failure of the bearing occurred because the hardness difference between the roller bearing and the inner-race surfaces resulted in wear of the inner-race. The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001252
EISBN: 978-1-62708-235-8
... Abstract An octagonal steel ingot weighing 13 tons made of manganese-molybdenum steel developed gaping cross-cracks on all eight sides in the forging press during initial pressure application. It was reported that the steel had been melted in a basic 12-ton arc furnace, oxygenated, furnished...
Abstract
An octagonal steel ingot weighing 13 tons made of manganese-molybdenum steel developed gaping cross-cracks on all eight sides in the forging press during initial pressure application. It was reported that the steel had been melted in a basic 12-ton arc furnace, oxygenated, furnished with 42 kg of 75% ferrosilicon and 12 kg aluminum additions, alloyed with 160 kg of 80% ferromanganese, and finally deoxidized in the ladle with 42 kg calcium silicon. For metallographic examination a plate approximately 100 mm thick was cut parallel to one of the eight planes. Platelet-like particles could be discerned on the conchoidal fracture planes with the SEM. The precipitates proved to be thin and partially transparent platelets of a hexagonal crystal lattice whose parameters resemble those of AIN. The precipitates were at least in part still undissolved in spite of the long holding period at high initial forging temperature. Another block melted under the same conditions and immediately after the defective one, was forged into a gear ring without any trouble. This ring was free of grain boundary precipitates, but it contained only 0.012 % AI and 0.0102 % N.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
... or at sites of other chromium or aluminum-rich phases such as carbides. 6 The basic mode of attack is accelerated oxidation, but the cause is internal carburization and sulfidation that deplete the chromium needed to maintain a chromium oxide scale. Once started, the process is self-maintaining and attack...
Abstract
An Incoloy 800H (UNS N08810) transfer line on the outlet of an ethane-cracking furnace failed during decoking of the furnace tubes after nine years in service. A metallographic examination using optical and scanning electron microscopy as well as energy-dispersive x-ray spectroscopy revealed that the failure was due to sulfidation. The source of the sulfur in the furnace effluent was either dimethyl disulfide, injected into the furnace feed to prevent coke formation and carburization of the furnace tubes, or contamination of the feed with sulfur bearing oil.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006914
EISBN: 978-1-62708-395-9
... material: modifying or substituting the basic polymer so that exposure to heat and oxygen will not produce rapid combustion, and using flame-retardant additives. It also provides an overview of the burning process and presents two flammability test methods. combustion properties fire resistance...
Abstract
A material is flammable if it is subject to easy ignition and rapidly flaming combustion. The plastics that are most widely used are the least expensive and tend to be the most flammable. This article describes the two basic approaches to improving the fire resistance of a polymeric material: modifying or substituting the basic polymer so that exposure to heat and oxygen will not produce rapid combustion, and using flame-retardant additives. It also provides an overview of the burning process and presents two flammability test methods.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003520
EISBN: 978-1-62708-180-1
... involved precipitator wires in a wet scrubbing system at a basic oxygen furnace (BOF) shop. There were six sets of wet scrubbing systems, and each had four zones. The data on the wire failure frequency are presented in Table 1 . Basically, wires were hung from porcelain insulators between plates...
Abstract
This article outlines the basic steps to be followed and the range of techniques available for failure analysis, namely, background data assembling, visual examination, microfractography, chemical analysis, metallographic examination, electron microscopy, electron microprobe analysis, X-ray techniques, and simulations. It also describes the steps for analyzing the data, preparing the report, preservation of evidence, and follow-up on recommendations.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001591
EISBN: 978-1-62708-227-3
... reduced by the use of a special molten slag of basic composition placed on the top of the molten steel in the ladle. The gas removal was completed by placing the ladle in a chamber that can be evacuated that substantially lowered the oxygen and hydrogen content in the steel. After these procedures...
Abstract
On 14 April 1912, at 11:40 p.m., Greenland Time, the Royal Mail Ship Titanic on its maiden voyage was proceeding westward at 21.5 knots (40 km/h) when the lookouts on the foremast sighted a massive iceberg estimated to have weighed between 150,000 to 300,000 tons at a distance of 500 m ahead. Immediately, the ship’s engines were reversed and the ship was turned to port (left) in an attempt to avoid the iceberg. In about 40 sec, the ship struck the iceberg below the waterline on its starboard (right) side near the bow. The iceberg raked the hull of the ship for 100 m, destroying the integrity of the six forward watertight compartments. Within 2 h 40 min the RMS Titanic sank. Metallurgical examination and chemical analysis of the steel taken from the Titanic revealed important clues that allow an understanding of the severity of the damage inflicted on the hull. Although the steel was probably as good as was available at the time the ship was constructed, it was very inferior when compared with modern steel. The notch toughness showed a very low value (4 J) for the steel at the water temperature (-2 deg C) in the North Atlantic at the time of the accident.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003551
EISBN: 978-1-62708-180-1
..., where G can be various hot gases, with or without dusts, either oxidizing (oxygen, air, or CO 2 ) or reducing (CO, H 2 ). In Table 1 , six types of refractories, from basic magnesia to acid silica and neutral zircon-zirconia are considered. Corrosion resistance of refractories based on the maximum...
Abstract
This article provides a discussion on the structural ceramics used in gas turbine components, the automotive and aerospace industries, or as heat exchangers in various segments of the chemical and power generation industries. It covers the fundamental aspects of chemical corrosion and describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001277
EISBN: 978-1-62708-215-0
... analysis of the waterwall tubes showed evidence of hydrogen damage, associated with heavy deposits and localized, underdeposit corrosion. Heavy deposits can serve as concentration sites for oxygen and acid-forming contaminants. When acidic or basic (low or high pH, respectively) conditions are present...
Abstract
Waterwall tube failure samples removed from a coal- and oil-fired boiler in service for 12 years exhibited localized underdeposit corrosion and hydrogen damage. EDS and XRD revealed that bulk internal deposits collected from the tubes contained metallic copper which can accelerate corrosion through galvanic effects and can promote hydrogen damage. Ultrasonic testing was recommended to locate tubes with severe gouging and corrosion, which are suspect locations for hydrogen damage. The source of the copper should be identified and future chemical cleaning of the boiler should address its presence in the waterwall tubes.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
.... Fig. 2 Weld defect (lack of fusion). This defect did not cause a failure even after 27 years in a reheater. Failures Involving Sudden Tube Rupture In the basic design of a boiler, the heat input from the combustion of fuel is balanced by the formation of steam in the furnace...
Abstract
This article explains the main types and characteristic causes of failures in boilers and other equipment in stationary and marine power plants that use steam as the working fluid with examples. It focuses on the distinctive features of each type that enable the failure analyst to determine the cause and suggest corrective action. The causes of failures include tube rupture, corrosion or scaling, fatigue, erosion, and stress-corrosion cracking. The article also describes the procedures for conducting a failure analysis.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
...-through type, wherein the water and steam flow through the boiler circuitry only once. Figure 1 explains the basic difference between the functioning of a subcritical and a supercritical boiler. Fig. 1 Schematic showing difference in functioning of subcritical and supercritical boilers...
Abstract
Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general procedure and techniques followed in failure investigation of boilers and related equipment are discussed. The article is framed with an objective to provide systematic information on various damage mechanisms leading to the failure of boiler tubes, headers, and drums, supplemented by representative case studies for a greater understanding of the respective damage mechanism.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
..., decarburization is produced when oxygen in the atmosphere at temperature reacts with and removes carbon from the hot surface. The depth of decarburization depends on the temperature, time at temperature, nature of the furnace atmosphere, reduction of area between the bloom and the finished size, and the type...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006766
EISBN: 978-1-62708-295-2
... is analyzed. Typical detection limits are 0.1 to 1 ppm. Lower detection limits are possible with special methodologies, such as postcolumn derivatization. The requisite skill level can be high, considering the wide range of parameters and choices of IC columns and detectors. A basic IC column and IC program...
Abstract
Identification of alloys using quantitative chemical analysis is an essential step during a metallurgical failure analysis process. There are several methods available for quantitative analysis of metal alloys, and the analyst should carefully approach selection of the method used. The choice of appropriate analytical techniques is determined by the specific chemical information required, the condition of the sample, and any limitations imposed by interested parties. This article discusses some of the commonly used quantitative chemical analysis techniques for metals. The discussion covers the operating principles, applications, advantages, and disadvantages of optical emission spectroscopy (OES), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray spectroscopy, and ion chromatography (IC). In addition, information on combustion analysis and inert gas fusion analysis is provided.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001791
EISBN: 978-1-62708-241-9
... to complementary data, this boiler tube is composed of common carbon steel with traces of chromium, nickel, and molybdenum. The boiler is an aqua tubular type and the operation conditions are circulating water with basic pH at a 45 bar pressure and 450°C temperature. The contamination of water by chlorides...
Abstract
A pipe in the lateral wall of a boiler powering an aircraft carrier flat-top boat failed during a test at sea. The pipe was made from ASTM 192 steel, an adequate material for the application. Microstructural analysis along with equipment operating records provided valuable insight into what caused the pipe to rupture. Although the pipe had been replaced just 50 h before the accident, the analysis revealed incrustations and corrosion pits on the inner walls and oxidation on the outer walls. Microstructural changes were also observed, indicating that the steel was exposed to high temperatures. The combined effect of pitting, incrustations, and phase transformations caused the pipe to rupture.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006831
EISBN: 978-1-62708-329-4
... of this, the International Committee of Foundry Technical Associations (ICFTA) has standardized the nomenclature, starting with the identification of seven basic categories of casting discontinuities (or defects, in the terminology used by the ICFTA classification scheme, Table 1 ): Metallic projections Cavities...
Abstract
The information provided in this article is intended for those individuals who want to determine why a casting component failed to perform its intended purpose. It is also intended to provide insights for potential casting applications so that the likelihood of failure to perform the intended function is decreased. The article addresses factors that may cause failures in castings for each metal type, starting with gray iron and progressing to ductile iron, steel, aluminum, and copper-base alloys. It describes the general root causes of failure attributed to the casting material, production method, and/or design. The article also addresses conditions related to the casting process but not specific to any metal group, including misruns, pour shorts, broken cores, and foundry expertise. The discussion in each casting metal group includes factors concerning defects that can occur specific to the metal group and progress from melting to solidification, casting processing, and finally how the removal of the mold material can affect performance.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001705
EISBN: 978-1-62708-234-1
... acid solution for five days, then flushed with water and a mild basic solution, [ 1 ]. During subsequent hydrostatic pressure testing the tubes failed, first by a blowout in one coil, which was then capped off, and next with multiple pinhole leaks. It was concluded that these failures were...
Abstract
The working fluid of a hypersonic wind tunnel is freon 14 heated in molten-metal-bath heat exchangers. The coils of the heaters have failed several times from various causes. They have been replaced each time with a stainless steel deemed more appropriate, but they continue to fail. In this case study, the history of failures is traced, the causes are analyzed, and recommendations are made for future design and maintenance. Coils fabricated from AISI 316 should provide satisfactory service life if reasonable precautionary measures are observed during maintenance and testing.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003555
EISBN: 978-1-62708-180-1
..., with a penetration of 0.2 to 0.8 mm (0.008 to 0.031 in.) in 50 to 55 days, in nickel alloys at 650 to 700 °C (1200 to 1300 °F). Nickel-chromium alloys containing titanium, niobium, and aluminum are better than basic nickel-chromium alloys in carbon dioxide atmospheres at 700 to 800 °C (1300 to 1470 °F). The alumina...
Abstract
High temperature corrosion may occur in numerous environments and is affected by factors such as temperature, alloy or protective coating composition, time, and gas composition. This article explains a number of potential degradation processes, namely, oxidation, carburization and metal dusting, sulfidation, hot corrosion, chloridation, hydrogen interactions, molten metals, molten salts, and aging reactions including sensitization, stress-corrosion cracking, and corrosion fatigue. It concludes with a discussion on various protective coatings, such as aluminide coatings, overlay coatings, thermal barrier coatings, and ceramic coatings.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... exposed at 650 to 700 °C (1200 to 1290 °F). Nickel-chromium alloys containing titanium, niobium, and aluminum are better than basic nickel-chromium alloys exposed in carbon dioxide atmospheres at 700 to 800 °C (1290 to 1470 °F). The alumina scale-forming alloys appear to be much more resistant...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001814
EISBN: 978-1-62708-180-1
... are typical of tool and die failures and illustrate many of the features specific to such failures. Additional information can be found in the Selected References that follow this article. A basic approach can be followed for most tool and die failures that will maximize the likelihood of obtaining...
Abstract
This article describes the characteristics of tools and dies and the causes of their failures. It discusses the failure mechanisms in tool and die materials that are important to nearly all manufacturing processes, but is primarily devoted to failures of tool steels used in cold-working and hot-working applications. It reviews problems introduced during mechanical design, materials selection, machining, heat treating, finish grinding, and tool and die operation. The brittle fracture of rehardened high-speed steels is also considered. Finally, failures due to seams or laps, unconsolidated interiors, and carbide segregation and poor carbide morphology are reviewed with illustrations.
1