Skip Nav Destination
Close Modal
Search Results for
BS-6323
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1 Search Results for
BS-6323
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001616
EISBN: 978-1-62708-229-7
... during assembly of the tubes reduced the corrosion problem. Flue gas BS-6323 Pitting corrosion High-temperature corrosion and oxidation Background Severe corrosion of carbon steel tubes in an air preheater was observed at a rice straw fired power plant. The plant has the capacity...
Abstract
Severe pitting corrosion of a carbon steel tube was observed in the air preheater of a power plant, which runs on rice straw firing. Approximately 1450 tubes were removed from Stage 3 of the preheater (air inlet and flue gas outlet) due to corrosion and local bursting. Samples from Stage 2 (where corrosion was low) and Stage 3 (severe corrosion) were taken and subjected to visual inspection, SEM, x-ray diffraction, microhardness measurement, and chemical and microstructural analysis. It was determined that extended non-operation of the plant resulted in the settlement of corrosive species on the tubes in Stage 3. The complete failure of the tube occurred due to diffusion of these elements into the base metal and precipitation of potassium and chlorine compounds along the grain boundaries, with subsequent dislodging of grains. The nonmetallic inclusions acted as nucleating sites for local pitting bursting. Nonuniform heat transfer in Stage 3 operation accelerated the selective corrosion of front-end tubes. The relatively high heat transfer in this stage resulted in condensation of some corrosive gases and consequent corrosion. Continuous operation of the plant with some precautions during assembly of the tubes reduced the corrosion problem.