1-20 of 52 Search Results for

Auger electron spectroscopy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 15 January 2021
Fig. 1 Auger electron spectroscopy secondary-electron image with a 5 μm field of view (FOV) of the nickel surface after removal of approximately 12 nm of surface contamination More
Image
Published: 01 January 2002
Fig. 2 Auger electron spectroscopy survey spectra obtained from features observed in secondary electron microscopy photo of stainless steel ( Fig. 1 ). Point 1, large particle feature near center of Fig. 3 . Point 2, small particle feature. Point 3, control point off of defects More
Image
Published: 01 January 2002
Fig. 3 Auger electron spectroscopy map of calcium contamination on stainless steel surface. Field of view, 1 μm More
Image
Published: 01 June 2019
Fig. 9 Details of information acquired by auger electron spectroscopy. (a) Phosphorus Dot Map ×1000; (b) Fracture Surface ×1000. More
Image
Published: 15 January 2021
Fig. 2 Auger electron spectroscopy survey spectra obtained from features observed in the secondary-electron image. Point 1: nickel surface; Point 2: nodular feature More
Image
Published: 15 January 2021
Fig. 3 Auger electron spectroscopy high-energy-resolution spectra of the (a) silicon KLL and (b) nickel LMM peaks showing the nickel silicide at the interface of the nickel film and silicon wafer More
Image
Published: 15 January 2021
Fig. 4 Auger electron spectroscopy overlay map of the sample surface showing multiple elements: carbon (red), nickel (blue), and silicon (green). FOV, field of view More
Image
Published: 15 January 2021
Fig. 11 Auger electron spectroscopy depth profile using monoatomic argon sputtering through the nickel film. A nickel silicide is observed at the interface. More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003534
EISBN: 978-1-62708-180-1
... Abstract This article provides information on the chemical characterization of surfaces by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). It describes the basic theory behind each of these techniques...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006771
EISBN: 978-1-62708-295-2
... Abstract This article covers the three most popular techniques used to characterize the very outermost layers of solid surfaces: Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Some of the more important...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003522
EISBN: 978-1-62708-180-1
..., Auger electron spectroscopy, secondary ion mass spectroscopy, and X-ray powder diffraction. The article discusses the analysis and interpretation of base material composition and microstructures. Preparation and examination of metallographic specimens in failure analysis are also discussed. The article...
Image
Published: 01 June 2019
Fig. 3 SEM micrograph near the M323 fatigue origin, showing the α + β microstructure, microhardness (HV) measurements in primary a grains, and locations (a, b) analyzed for oxygen content using Auger electron spectroscopy (AES) More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006402
EISBN: 978-1-62708-217-4
... of the panels was endorsed. Most importantly, surveillance of the anodizing process itself was emphasized. Alkaline cleaning Anodizing Auger electron spectroscopy Energy dispersive x ray analysis Fuel tanks Panels Scanning electron microscopy Sealing Surface preparation Vapor degreasing Wings...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045918
EISBN: 978-1-62708-235-8
... cleaning procedures to remove any trace of the cleaning acids be used. Auger electron spectroscopy Contaminants Grain boundaries Rocket nozzles Scanning electron microscopy Nb-106 Stress-corrosion cracking Intergranular fracture Since electron microscopy for the evaluation of fracture...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006945
EISBN: 978-1-62708-395-9
... acrylonitrile-butadiene-styrene acetals Auger electron spectroscopy aramid ber American National Standards Institute ammonium polyphosphate ASTM International, formerly the American Society for Testing and Materials alumina trihydrate butadiene bis(2-hydroxyethyl)terephthalate bulk molding compound...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001335
EISBN: 978-1-62708-215-0
.... Discussion Many polycrystalline metals can become brittle and fail along grain boundaries when a low stress is applied. The brittleness has been attributed to intergranular weakness caused by the precipitation or segregation of impurities to grain boundaries. For example, Auger electron spectroscopy...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091644
EISBN: 978-1-62708-217-4
.... 265×. (d) Scanning electron microscopy fractograph of area C in (b). Area of fast fracture shows cleavage and dimples. 265× Examination of corrosion products on the fracture by Auger emission spectroscopy and secondary imaging spectroscopy revealed the presence of elements typically found...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001357
EISBN: 978-1-62708-215-0
... of the analysis; spectrums obtained by Auger electron spectroscopy and X-ray photoelectron microscopy (XPS) are shown respectively in Fig. 9 and 10 . Results of electron spectroscopy at two different Table 1 Results of electron spectroscopy at two different Point Depth, nm Elements detected...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... temperature at which austenite begins to form on heating Ac3 temperature at which transformation of ferrite to austenite is completed on heating ABS acrylonitrile-butadiene-styrene ACI Alloy Casting Institute AES Auger electron spectroscopy AGMA American Gear Manufacturers Asso- ciation AISI American Iron...