Skip Nav Destination
Close Modal
Search Results for
Atmospheric corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 223
Search Results for Atmospheric corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 48 Effect of velocity of seawater at atmospheric temperature on the corrosion rate of steel
More
Image
Published: 15 January 2021
Fig. 48 Effect of velocity of seawater at atmospheric temperature on the corrosion rate of steel
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001068
EISBN: 978-1-62708-214-3
... Abstract Four tanks made from type 304L stainless steel were removed from storage. Atmospheric corrosion on the outside of the tanks and pitting and crevice corrosion on the inside were visible. Metallographic examination revealed that the internal corrosion had been caused by crevices related...
Abstract
Four tanks made from type 304L stainless steel were removed from storage. Atmospheric corrosion on the outside of the tanks and pitting and crevice corrosion on the inside were visible. Metallographic examination revealed that the internal corrosion had been caused by crevices related to weld spatter and uneven weld deposit and by service water that had not been drained after hydrostatic testing. External corrosion was attributed to improper passivation. It was recommended that the surfaces be properly passivated and that, before storage, the interiors be rinsed with demineralized water and dried.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091669
EISBN: 978-1-62708-227-3
... of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction...
Abstract
During a routine inspection, cracks were discovered in several aluminum alloy (similar to either 2014 or 2017) coupling nuts on the fuel lines of a missile. The fuel lines had been exposed to a marine atmosphere for six months while the missile stood on an outdoor test stand near the seacoast. A complete check was then made, both visually and with the aid of a low-power magnifying glass, of all coupling nuts of this type on the missile. Investigation (visual inspection, spectrographic and chemical analysis, and metallographic examination) supported the conclusion that the cracking of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction of stress. The elongated grain structure transverse to the direction of stress was a consequence of following the generally used procedure of machining this type of nut from bar stock. Recommendations included changing the materials specification for new coupling nuts for this application to permit use of only aluminum alloys 6061-T6 and T651 and 2024-T6, T62, and T851.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001389
EISBN: 978-1-62708-215-0
... to be a corrosion layer that resulted from exposure to ammonia in a humid atmosphere. Simulation tests confirmed that ammonia was the corrodent. The ammonia originated from the phenolic molding area of the plant. It was recommended that fumes from molding areas be vented outside the plant and that assembly, storage...
Abstract
During routine quality control testing, small circuit breakers exhibited high contact resistance and, in some cases, insulation of the contacts by a surface film. The contacts were made of silver-refractory (tungsten or molybdenum) alloys. Infrared analysis revealed the film to be a corrosion layer that resulted from exposure to ammonia in a humid atmosphere. Simulation tests confirmed that ammonia was the corrodent. The ammonia originated from the phenolic molding area of the plant. It was recommended that fumes from molding areas be vented outside the plant and that assembly, storage, and calibration areas be isolated from molding areas.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0091538
EISBN: 978-1-62708-233-4
... was produced by stress corrosion as the combined result of: residual forming and service stresses; the concentration of tensile stress at outer square corners of the pierced slots; and preferential corrosive attack along the grain boundaries as a result of high humidity and occasional condensation of moisture...
Abstract
Electrical contact-finger retainers blanked and formed from annealed copper alloy C65500 (high-silicon bronze A) failed prematurely by cracking while in service in switchgear aboard seagoing vessels. In this service they were sheltered from the weather but subject to indirect exposure to the sea air. About 50% of the contact-finger retainers failed after five to eight months of service aboard ship. Investigation (visual inspection, 250x images etched with equal parts NH4OH and H2O2, emission spectrographic analysis, and stereoscopic views) supported the conclusion that the cracking was produced by stress corrosion as the combined result of: residual forming and service stresses; the concentration of tensile stress at outer square corners of the pierced slots; and preferential corrosive attack along the grain boundaries as a result of high humidity and occasional condensation of moisture containing a fairly high concentration of chlorides (seawater typically contains about 19,000 ppm of dissolved chlorides) and traces of ammonia. Recommendations included redesign of the slots, shot-blasting the formed retainers, and changing the material to a different type of silicon bronze-copper alloy C64700.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046079
EISBN: 978-1-62708-233-4
... and convection. The heaters were used only a few nights a year and where stored outdoors when not in use. To minimize cost and deterioration from atmospheric corrosion, the heater shells were made of galvanized low-carbon steel sheet about 0.5 mm (0.020 in.) thick. Investigation Visual examination...
Abstract
After only a short time in service, oil-fired orchard heaters made of galvanized low-carbon steel pipe, 0.5 mm (0.020 in.) in thickness, became sensitive to impact, particularly during handling and storage. Most failures occurred in an area of the heater shell that normally reached the highest temperature in service. A 400x etched micrograph showed a brittle and somewhat porous metallic layer about 0.025 mm (0.001 in.) thick on both surfaces of the sheet. Next to this was an apparently single-phase region nearly 0.05 mm (0.002 in.) in thickness. The examination supported the conclusion that prolonged heating of the galvanized steel heater shells caused the zinc-rich surface to become alloyed with iron and reduce the number of layers. Also, heating caused zinc to diffuse along grain boundaries toward the center of the sheet. Zinc in the grain boundaries reacted with iron to form the brittle intergranular phase, resulting in failure by brittle fracture at low impact loads during handling and storage. Recommendation included manufacture of the pipe with aluminized instead of galvanized steel sheet for the combustion chamber.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001390
EISBN: 978-1-62708-215-0
... not been carried out as specified. It was recommended that the sheathing material be fully annealed and that the outer surface be pickled and passivated. Electric heating elements Heat-distributing units Marine atmospheres Nuclear reactor components Sheaths 304L UNS S30403 Stress-corrosion...
Abstract
Cracking occurred in type 304L stainless steel sheaths on nichrome wire heaters that had been in storage for about 5 years in a coastal atmosphere. The cracks were discovered when the heater coils were removed from storage in their original polyethylene packing materials and straightened for use. Fractography established that fracture occurred by stress-corrosion cracking. The cracks originated at rusted areas on the cladding that occurred under iron particles left on the surface during manufacture. High hardness values indicated that solution annealing following cold working had not been carried out as specified. It was recommended that the sheathing material be fully annealed and that the outer surface be pickled and passivated.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001765
EISBN: 978-1-62708-241-9
... Atmospheric Corrosion allowances Shell 0 mm Bottom plates 0 mm Roof plates 0 mm Roof framing 0 mm Wind design per API 650 162 km/h Materials Shell rings 1 to 7 A 537 class 2 Annular plates A 283-C Bottom plates A 283-C Roof plates A 283-C Columns A312-TP...
Abstract
This paper describes the investigation of a corrosion failure of bottom plates on an aboveground tank used for the storage of potable water. The tank was internally inspected for the first time after six years of service. Paint blisters and rust spots were observed on the bottom plates and first to third course shell plates. Sand blasting and repainting of the bottom plates and first course shell plates was to be used as a remedial measure. However, during the sand blasting, holes and deep pitting were observed on the bottom plates. On-site visual inspection, magnetic flux leakage (MFL) inspection, ultrasonic testing (UT), and evaluation of the external cathodic protection (CP) system were used in the failure analysis. The corrosion products were analyzed using energy-dispersive X-ray analysis (EDAX). The failure is attributed to the ingress of water and its impoundment under the tank bottom along the periphery inside the ring wall and failure of water side epoxy coating. Various measures to prevent such failures in the future are recommended.
Image
Published: 15 January 2021
Fig. 25 Effect of p SO 2 on Na 2 SO 4 -induced corrosion at 700 °C (1290 °F). 2.5 ppm atmospheric SO 2 can greatly accelerate hot corrosion over that in clean air conditions. With Na 2 SO 4 salt deposit, the catalyzed O 2 -0.1%SO 2 atmosphere causes accelerated attack at 700 °C by forming
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001072
EISBN: 978-1-62708-214-3
... was attributed to stress-corrosion cracking caused by a corrosive atmosphere. Chemical processing equipment Weldments ASTM A294 Stress-corrosion cracking Background Radial cracking occurred adjacent to 11 vanes in a 19-vane ASTM A-294 impeller. The vanes were fillet welded to both the disk...
Abstract
Radial cracking occurred adjacent to 11 vanes in a 19-vane impeller operating in a chemical plant environment. The impeller vanes were fillet welded to both the disk and the cover Cracks were next to the fillet welds and near the cover outer diameter They generally did not extend to the outer diameter. The entire impeller surface was tested by the dry magnetic particle method. Visual and microstructural examinations revealed intergranular cracking. Energy-dispersive spectroscopy of corrosion products contained in the cracks disclosed the presence of chlorine and sulfur The failure was attributed to stress-corrosion cracking caused by a corrosive atmosphere.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001237
EISBN: 978-1-62708-220-4
... steel. Where the cracks had not eroded away, it was clear they ran transcrystalline, indicative of stress-corrosion cracking. Because the cracks propagated from the outer surface of the vessel, they were not caused by the derusting agent but by the external atmosphere in conjunction with welding...
Abstract
A welded vessel made of acid resistant 18-8 steel used in a derusting operation started to leak after a long period due to the formation of cracks. The vessel was heated from the outside and did not come into direct contact with the flame. It was surrounded by a casing of unalloyed steel. Where the cracks had not eroded away, it was clear they ran transcrystalline, indicative of stress-corrosion cracking. Because the cracks propagated from the outer surface of the vessel, they were not caused by the derusting agent but by the external atmosphere in conjunction with welding stresses. The narrow gap between vessel and mild steel casing may have aggravated the situation in that it hindered ventilation and evaporation of condensation and favored the absorption and concentration of acids and salts. Contact and crevice corrosion due to deposition of rust from the mild steel casing may have contributed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001240
EISBN: 978-1-62708-234-1
... Abstract A heat exchanger made of a pipe in which oil was heated from the outside from approximately 90 deg C to 170 deg C, by superheated steam of about 8 to 10 atmospheres had developed a leak at the rolled joint of the pipe and pipe bottom. The pipes were supposed to be made from St 35.29...
Abstract
A heat exchanger made of a pipe in which oil was heated from the outside from approximately 90 deg C to 170 deg C, by superheated steam of about 8 to 10 atmospheres had developed a leak at the rolled joint of the pipe and pipe bottom. The pipes were supposed to be made from St 35.29 steel and annealed at the rolled joint to 100 mm length. The outer pipe surface was strongly pitted by corrosion all around the rolled joint. In the vicinity of the steam chamber the pipe wall had oxidized through from the exterior to the interior at one spot. Adjoining this spot, grooves caused by erosion were noticeable. This was a typical case of crevice corrosion. The rolled joint evidently was not entirely tight, so that saturated steam condensate could penetrate into the gap.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001349
EISBN: 978-1-62708-215-0
... indicated severe sensitization in the HAZ due to high heat input during welding. An intergranular corrosion test confirmed the observations. The severe sensitization was coupled with residual stresses and exposure of the assembly to a coastal atmosphere during storage prior to installation. This combination...
Abstract
The dished ends of a heavy water/helium storage tank manufactured from 8 mm (0.3 in.) thick type 304 stainless plate leaked during hydrotesting. Repeated attempts at repair welding did not alleviate the problem. Examination of samples from one dished end revealed that the cracking was confined to the heat affected zone (HAZ) surrounding circumferential welds and, to a lesser extent, radial welds that were part of the original construction. Most of the cracks initiated and propagated from the inside surface of the dished ends. Microstructures of the base metal, HAZ, and weld metal indicated severe sensitization in the HAZ due to high heat input during welding. An intergranular corrosion test confirmed the observations. The severe sensitization was coupled with residual stresses and exposure of the assembly to a coastal atmosphere during storage prior to installation. This combination of factors resulted in failure by stress-corrosion cracking. Implementation of a new repair procedure was recommended. Repairs were successfully made using the new procedure, and all cracks in the weld repair zones were eliminated.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001319
EISBN: 978-1-62708-215-0
... observed, indicating contamination by rusted carbon steel particles. Liquid penetrant testing was used to determine the extent of the cracks, and in situ metallographic analysis was performed over the cracked region. The morphology of the cracks was indicative of transgranular stress-corrosion cracking...
Abstract
Several type 304L stainless steel dished ends used in the fabrication of cylindrical vessels developed extensive cracking during storage. All of the dished ends had been procured from a single manufacturer and belonged to the same batch. When examined visually, several rust marks were observed, indicating contamination by rusted carbon steel particles. Liquid penetrant testing was used to determine the extent of the cracks, and in situ metallographic analysis was performed over the cracked region. The morphology of the cracks was indicative of transgranular stress-corrosion cracking (TGSCC). Conditions promoting the occurrence of the TGSCC included significant tensile stresses on the inside of the dished ends, the presence of surface contamination by iron due to poor handling practice using carbon steel implements, and storage in a coastal environment with an average temperature of 25 to 32 deg C (77 to 90 deg F), an average humidity ranging from 70 to 80%, and an atmospheric NaCl content ranging from 8 to 45 mg/m2 /day. Recommendations preventing further occurrence of the situation were strict avoidance of the use of carbon steel handling implements, strict avoidance of cleaning practices that cause long-term exposure to chlorine-containing cleaning fluid, and solution annealing of the dished ends at 1050 deg C (1920 deg F) for 1 h followed by water quenching to relieve residual stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001180
EISBN: 978-1-62708-219-8
... cracking. Although copper is not susceptible in the pure state, it is prone to stress-corrosion cracking under tensile stress in the presence of other elements in a damp ammoniacal atmosphere. The material was not defective, but a phosphorus-deoxidized copper type. The residual phosphorus combined...
Abstract
A T-piece from a copper hot water system failed. Microscopic examination of a polished section revealed a main crack and branching transcrystalline cracks running from the outer surface of the pipe into the pipe wall. The crack appearance indicated disintegration by stress-corrosion cracking. Although copper is not susceptible in the pure state, it is prone to stress-corrosion cracking under tensile stress in the presence of other elements in a damp ammoniacal atmosphere. The material was not defective, but a phosphorus-deoxidized copper type. The residual phosphorus combined with oxygen to form phosphorus pentoxide. Hard soldering in turn prevented the formation of cuprous oxide, and hydrogen embrittlement occurred.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001059
EISBN: 978-1-62708-214-3
...-corrosion cracking beneath the pitted areas on the OD. The likely cause of the cracking was chloride stress corrosion, with chlorides deriving from the marine atmosphere and concentrating under the insulation around the support rings. A complete insulation evaluation, including repair or replacement...
Abstract
Field metallography and replication were performed on a type 316 stainless steel column in diglycol amine vacuum service to determine the cause of visible OD pitting on the column in several areas above the insulation support rings. The examination revealed transgranular stress-corrosion cracking beneath the pitted areas on the OD. The likely cause of the cracking was chloride stress corrosion, with chlorides deriving from the marine atmosphere and concentrating under the insulation around the support rings. A complete insulation evaluation, including repair or replacement, was recommended to prevent chloride buildup. Painting of the steel surface with an epoxy-phenolic or epoxy-coal tar was also suggested.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001455
EISBN: 978-1-62708-234-1
... atmosphere. Figure 3 shows in close-up a similar form of attack on a butt joint strap used in a lifting device exposed to an industrial atmosphere. Removal of the corrosion product from surfaces attacked in this manner reveals the characteristic step-like mechanism of the process seen in the illustrations...
Abstract
Aluminum alloy BS.1476-HE.15 by virtue of its high strength and low density finds application in the form of bars or sections for cranes, bridges, and other such structures where a reduction in dead weight load and inertia stresses is advantageous. Bars and sections in H.15 alloy are mostly produced by extrusion. Some material processed this way has been prone to exfoliation corrosion. Extended aging for 24 h at a temperature of 185 deg C (365 deg F) virtually suppresses the tendency for exfoliation corrosion to develop. Also, the use of a sprayed coating, either of aluminum or Al-1Zn alloy, was effective in halting and preventing this form of attack. While alarming, the appearance of exfoliation corrosion provides a valuable warning to the engineer or inspector before a severe weakening of the particular sections has occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001160
EISBN: 978-1-62708-220-4
... Abstract A corrosion resistant chromium nickel steel (X 2 Cr-Ni-Mo 18 10) worm drive used in a chemical plant at 80 deg C and 100 to 200 atm pressure to transport media containing chloride failed during normal operation. Visual inspections showed that the entire surface of the gear was covered...
Abstract
A corrosion resistant chromium nickel steel (X 2 Cr-Ni-Mo 18 10) worm drive used in a chemical plant at 80 deg C and 100 to 200 atm pressure to transport media containing chloride failed during normal operation. Visual inspections showed that the entire surface of the gear was covered with fine branching cracks and was flaking off. Microscopic examination showed that the unetched polished material had disintegrated to an average depth of 1 mm below the surface. A micrograph of the etched surface revealed numerous deformation lines and transgranular cracking. The failure was thus due to stress-corrosion cracking and additional corrosion due to ventilation elements. Because austenitic chromium nickel steels are prone to stress-corrosion cracking, particularly in the presence of chlorine compounds at high temperatures, and because austenitic rust- and acid-resistant steels are prone to smearing and work hardening during machining, it was recommended that these types of steels be machined only with sharp, short tools mounted in rigid structures. In addition, residual stresses should be eliminated by post-process annealing in a protective atmosphere.
1