Skip Nav Destination
Close Modal
Search Results for
Assembling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 642 Search Results for
Assembling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001759
EISBN: 978-1-62708-241-9
... Abstract A bearing cup in a drive shaft assembly on an automobile was found to have failed. A detailed analysis was conducted using the QC story approach, which begins by proposing several possible failure scenarios then following them to determine the main root cause. A number of alternative...
Abstract
A bearing cup in a drive shaft assembly on an automobile was found to have failed. A detailed analysis was conducted using the QC story approach, which begins by proposing several possible failure scenarios then following them to determine the main root cause. A number of alternative solutions were identified and then validated based on chemical analysis, endurance and hardness tests, and microstructural examination. The investigation revealed that carbonitriding can effectively eliminate the type of failure encountered because it prevents through hardening of the bearing cup assembly.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090451
EISBN: 978-1-62708-218-1
... Abstract Cracking occurred within the plastic jacket (injection molded from an impact-modified, 15% glass-fiber-reinforced PET resin.) of several assemblies used in a transportation application during an engineering testing regimen which involved cyclic thermal shock (exposing the parts...
Abstract
Cracking occurred within the plastic jacket (injection molded from an impact-modified, 15% glass-fiber-reinforced PET resin.) of several assemblies used in a transportation application during an engineering testing regimen which involved cyclic thermal shock (exposing the parts to alternating temperatures of -40 and 180 deg C (-40 and 360 deg F)). Prior to molding, the resin had reportedly been dried at 135 deg C (275 deg F). The drying process usually lasted 6 h, but occasionally, the material was dried overnight. Comparison investigation (visual inspection, 20x SEM views, micro-FTIR, and analysis using DSC and TGA) with non-failed parts supported the conclusion that that the failure was via brittle fracture associated with the exertion of stresses that exceeded the strength of the resin as-molded caused by the disparity in the CTEs of the PET jacket and the mating steel sleeve. The drying process had exposed the resin to relatively high temperatures, which caused substantial molecular degradation, thus limiting the part's ability to withstand the stresses. The drying temperature was found to be significantly higher than the recommendation for the PET resin, and the testing itself exposed the parts to temperatures above the recognized limits for PET.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001644
EISBN: 978-1-62708-219-8
... Abstract A large fan assembly deformed and broke at multiple locations. The user wanted to know whether the bearing pillow block fracture caused the fan blade assembly to crack, or whether a fan blade assembly fracture caused the pillow block to crack. Close inspection of the entire length...
Abstract
A large fan assembly deformed and broke at multiple locations. The user wanted to know whether the bearing pillow block fracture caused the fan blade assembly to crack, or whether a fan blade assembly fracture caused the pillow block to crack. Close inspection of the entire length of the crack showed the crack probably grew quite a while before it was large enough to cause the final catastrophic event. No evidence of fatigue cracks was visible on the broken pillow blocks. In the absence of some other contradictory information, the usual conclusion would be to presume that the fatigue crack predated the single overload crack.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c0090457
EISBN: 978-1-62708-222-8
... Abstract Components of a latch assembly used in a consumer safety restraint exhibited a relatively high failure rate. The failures were occurring after installation but prior to actual field use when failure could result in severe injury. Cracking occurred within retaining tabs used to secure...
Abstract
Components of a latch assembly used in a consumer safety restraint exhibited a relatively high failure rate. The failures were occurring after installation but prior to actual field use when failure could result in severe injury. Cracking occurred within retaining tabs used to secure a metal slide on an older design, whereas newer components showed no signs of failure. The latch assembly components were injection molded from an unfilled commercial grade of a polyacetal copolymer. Investigation of failed parts (including visual inspection, a specially designed proof load test, 59x SEM images, micro-FTIR in the ATR mode, and DSC/TGA/MFR analysis) showed no evidence of contamination or degradation from the molding process. The conclusion was that the parts failed via brittle fracture associated with stress overload. The stress overload was accompanied by severe apparent embrittlement resulting from a relatively high strain rate event and/or significant stress concentration. A relatively sharp corner formed by a retaining tab on the older design was shown to be a primary cause of the failures.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001304
EISBN: 978-1-62708-215-0
... Abstract An exhaust diffuser assembly failed prematurely in service. The failure occurred near the intake end of the assembly and involved fracture in the diffuser cone (Corten), diffuser in take flange (type 310 stainless steel), diffuser exit flange (type 405 stainless steel), expansion...
Abstract
An exhaust diffuser assembly failed prematurely in service. The failure occurred near the intake end of the assembly and involved fracture in the diffuser cone (Corten), diffuser in take flange (type 310 stainless steel), diffuser exit flange (type 405 stainless steel), expansion bellows (Inconel 600), and bellows intake flange (Corten). Individual segments of the failed subassemblies were examined using various methods. The analysis indicated that the weld joint in the diffuser intake flange (type 310 stainless steel to Corten steel) contained diffusion-zone solidification cracks. The joints had been produced using the mechanized gas-metal arc welding process. Cracking was attributed to improper control of welding parameters, and failure was attributed to weld defects.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c0048087
EISBN: 978-1-62708-231-0
... Abstract Several of the welds in a hoist carriage tram-rail assembly fabricated by shielded metal arc welding the leg of a large T-section 1020 steel beam to the leg of a smaller T-section 1050 steel rail failed in one portion of the assembly. Four weld cracks and several indefinite indications...
Abstract
Several of the welds in a hoist carriage tram-rail assembly fabricated by shielded metal arc welding the leg of a large T-section 1020 steel beam to the leg of a smaller T-section 1050 steel rail failed in one portion of the assembly. Four weld cracks and several indefinite indications were found by magnetic-particle inspection. The cracks were revealed by metallographic examination to have originated in the HAZs in the rail section. Cracks in welds and in HAZs resulting from arcing the electrode adjacent to the weld and weld spatter were also revealed. The tram-rail assembly was concluded to have failed by fatigue cracking in HAZs. The fatigue cracking was initiated and propagated by vibration of the tram rail by movement of the hoist carriage on the rail. As a corrective measure, welding procedures were improved and the replacement rail assemblies were preheated and postheated.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045988
EISBN: 978-1-62708-235-8
... Abstract During installation, a clamp-strap assembly, specified to be type 410 stainless steel-austenitized at 955 to 1010 deg C (1750 to 1850 deg F), oil quenched, and tempered at 565 deg C (1050 deg F) for 2 h to achieve a hardness of 30 to 35 HRC, and used for securing the caging mechanism...
Abstract
During installation, a clamp-strap assembly, specified to be type 410 stainless steel-austenitized at 955 to 1010 deg C (1750 to 1850 deg F), oil quenched, and tempered at 565 deg C (1050 deg F) for 2 h to achieve a hardness of 30 to 35 HRC, and used for securing the caging mechanism on a star-tracking telescope, fractured transversely across two rivet holes closest to one edge of the pin retainer in a completely brittle manner. Comparison with a non-failed strap using microscopic examination, spectrographic analysis, and slow-bend tests showed that both fit the 410 stainless steel specs, but hardness and grain size were different. Reheat treatment of full-width specimens showed that coarse grain size (ASTM 2 to 3) was responsible for the brittle fracture, and excessively high temperature during austenitizing caused the large grain size in the failed strap. The fact that the hardness of the strap that failed was lower than the specified hardness of 30 to 35 HRC had no effect on the failure because that of the non-failed strap was even lower. Recommendation was that the strap should be heat treated as specified to maintain the required ductility and grain size.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0006417
EISBN: 978-1-62708-234-1
... Abstract A cadmium-plated 4340 Ni-Cr-Mo steel ballast elbow assembly was submitted for failure analysis to determine the element or radical present in an oxidation product found inside the elbow assembly. Energy-dispersive x-ray analysis in the SEM showed that iron was the predominant species...
Abstract
A cadmium-plated 4340 Ni-Cr-Mo steel ballast elbow assembly was submitted for failure analysis to determine the element or radical present in an oxidation product found inside the elbow assembly. Energy-dispersive x-ray analysis in the SEM showed that iron was the predominant species, presumably in an oxide form. The inside surface had the appearance of typical corrosion products. Hardness measurements indicated that the 4340 steel was heat treated to a strength of approximately 862 MPa (125 ksi). It was concluded that the oxide detected on the ballast elbow was iron oxide. The possibility that the corrosion products would eventually create a blockage of the affected hole was great considering the small hole diameter (4.2 mm, or 0.165 in.). It was recommended that a quick fix to stop the corrosion would be to apply a corrosion inhibitor inside the hole. This, however, would cause the possibility of inhibitor buildup and the eventual clogging of the hole. A change in the manufacturing process to include a cadmium plating on the hole inside surface was recommended. This was to be accomplished in accordance with MIL specification QQ-P-416, Type II, Class 1. A material change to 300-series stainless steel was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001572
EISBN: 978-1-62708-236-5
... in this case for the production acceptance tests. Coating removal Gouging Hydraulic assemblies Wobblers 52100E Titanium nitride coating UNS G52986 (Other, miscellaneous, or unspecified) failure Background Extensive slipper/wobbler failures had occurred in the integrated drive generators...
Abstract
Extensive slipper/wobbler failures occurred in the integrated drive generators that incorporated TiN coated wobblers, during the production acceptance test. Similar coated wobblers had passed the application tests. The nature of the failure was extensive gouging of the wobbler surface with discoloration and coating removal. The substrate material was E52100 which was through-hardened to HRC 55-60. The slippers that were in contact with the coated wobbler surface were made of AISI 06 material. A synthetic oil was used as the hydraulic fluid in the application. The failure in the wobblers was caused by lack of temperature control during application which resulted in localized surface rehardening. It was established that there was a significant difference in the grade of the hydraulic fluid that was used in the two test programs. Use of superior grade of hydraulic fluid was recommended in this case for the production acceptance tests.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001703
EISBN: 978-1-62708-227-3
... Abstract This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic...
Abstract
This paper describes the metallurgical investigation of a broken spindle used to attach an antenna to the mast of a naval vessel. Visual inspections of both failed and intact fastener assemblies were carried out both on-board ship and in the laboratory followed by metallographic and fractographic examinations. Simulations were also performed on stressed material in a suitable environment to assess the relative importance of postulated failure mechanisms. Factors contributing to this failure including assembly procedures and applied preloads, service loading and environment, and material selection and specification. The discussion considers whether this failure was an isolated incident or is likely to be a fleet-wide problem, and suggests ways to prevent reoccurrence.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001910
EISBN: 978-1-62708-217-4
... Abstract Breech bolt assemblies from the Gatling guns used on fighter aircraft failed during firing tests. Metallography of the failed components revealed considerable decarburization which resulted in a loss of surface hardness. It was also determined that the maraging steel components were...
Abstract
Breech bolt assemblies from the Gatling guns used on fighter aircraft failed during firing tests. Metallography of the failed components revealed considerable decarburization which resulted in a loss of surface hardness. It was also determined that the maraging steel components were not in the nitrided condition as was required. This resulted in lower wear and fatigue resistance. These components also had a silicon content nearly double of that specified. The high silicon content lowered the notch tensile strength and toughness of the components.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c0092155
EISBN: 978-1-62708-221-1
... was conducted to determine the cause of the malfunction and to recommend corrective measures that would prevent similar failures in other vehicles. Fig. 1 Gas-nitrided 4140 steel (27–31 HRC) drive-gear assembly in which gear teeth deformed because of faulty design and low core hardness. Details A and B...
Abstract
Component slippage in the left-side final drive train of a tracked military vehicle was detected after the vehicle had been driven 13,700 km (8500 miles) in combined highway and rough-terrain service. The slipping was traced to the mating surfaces of the final drive gear and the adjacent splined coupling sleeve. Specifications included that the gear and coupling be made from 4140 steel bar oil quenched and tempered to a hardness of 265 to 290 HB (equivalent to 27 to 31 HRC) and that the finish-machined parts be single-stage gas nitrided to produce a total case depth of 0.5 mm (0.020 in.) and a minimum surface hardness equivalent to 58 HRC. Investigation (visual inspection, low-magnification images, 500X images of polished sections etched in 2% nital, spectrographic analysis, and hardness testing) supported the conclusion that the failure occurred by crushing, or cracking, of the case as a result of several factors. Recommendations included reducing the high local stresses at the pitch line to an acceptable level with a design modification. Also suggested was specification of a core hardness of 35 to 40 HRC to provide adequate support for the case and to permit attainment of the specified surface hardness of 58 HRC.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0048661
EISBN: 978-1-62708-225-9
... Abstract The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin...
Abstract
The drive wheel on a clutch-drive support assembly was slightly loose and caused clutch failures in service after 680,000 cycles. After failure, removal of the taper pin holding the drive wheel on the shaft was difficult, indicating that the pin was tight in the assembly. The taper pin was made of 1141 steel, the shaft 1117 steel, and the drive wheel 52100 steel. It was found that failure of the clutch-drive support assembly occurred as a result of fatigue fracture of the taper pin. A loose fit between the drive wheel and the shaft and between the drive wheel and the pin permitted movement that resulted in fatigue failure. Fretting of the pin and drive shaft was observed but did not appear to have contributed to the failure. To prevent reoccurrence, the assembly should be redesigned to include an interference fit between the shaft and the drive wheel. The drive wheel and the shaft should be taper reamed at assembly to ensure proper fit. In addition, receiving inspection should be more critical of the components and accept only those that meet specifications.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001052
EISBN: 978-1-62708-214-3
... Abstract A failure analysis was conducted to determine the cause of recurring failure of flexible bellows in an exhaust hose assembly. The bellows were made of type 321 stainless steel. Visual examination showed that cracks followed a path along the seam weld in the bellows. Most of the cracks...
Abstract
A failure analysis was conducted to determine the cause of recurring failure of flexible bellows in an exhaust hose assembly. The bellows were made of type 321 stainless steel. Visual examination showed that cracks followed a path along the seam weld in the bellows. Most of the cracks followed a multidirectional/circular pattern, occasionally chipping off the convolutions, an indication of high-resonance fatigue-type cracking. Scanning electron fractography showed fatigue striations throughout the fracture surface. The microstructure consisted of relatively large grains and an abnormal degree of titanium-base stringers. Wall thickness was about 0.15 mm (0.006 in.) underside. It was concluded that the high vane pass frequency excited the natural vibration of the bellows to a higher resonance and cracked the bellows after a relatively short service period. The assembly was redesigned, and no further cracking occurred.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001325
EISBN: 978-1-62708-215-0
... Abstract A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service...
Abstract
A carbon steel piping cross-tee assembly which conveyed hydrogen sulfide (H7S) process gas at 150 to 275 deg C (300 to 585 deg F) with a maximum allowable operating pressure of 3 MPa (450 psig) ruptured at the toe of one of the welds at the cross after several years of service. The failure was initially thought to be the result of thermal fatigue, and the internal surfaces exhibited the “elephant hide” pattern characteristic of thermal fatigue. However metallographic failure analysis found that this pattern was the result of corrosion rather than thermal fatigue. Corrosion caused failure at this location because the weld was abnormally thin as fabricated. Thus, failure resulted from inadequate deposition of weld metal and subsequent wall thinning from internal corrosion. It was recommended that the cross-tee be replaced with a like component, with more careful attention to weld quality.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001908
EISBN: 978-1-62708-235-8
... Abstract Cluster bomb tailcone assemblies each containing two aluminum die-cast components were rejected because of the poor surface condition of the die castings. Numerous heat checks were found on the surfaces of the tailcones and radiographic inspection revealed inclusions, gas holes...
Abstract
Cluster bomb tailcone assemblies each containing two aluminum die-cast components were rejected because of the poor surface condition of the die castings. Numerous heat checks were found on the surfaces of the tailcones and radiographic inspection revealed inclusions, gas holes, and shrinkage defects in the castings. Most of the components failed to meet required mechanical properties because of these casting defects.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046371
EISBN: 978-1-62708-234-1
... Abstract When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing...
Abstract
When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained any stainless steel from the spacer. Other items for investigation were the nature of the bond between the galled spot and the inner cone and any evidence of overtempering or rehardening resulting from localized overheating. Analysis (visual inspection, electron probe x-ray microanalysis, microscopic examination, and hardness testing) supported the conclusions that galling had been caused by a combination of local overload and abnormal vibration of mating parts of the roller-bearing assembly. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047140
EISBN: 978-1-62708-234-1
... Abstract A roll assembly consisting of a forged AISI type 440A stainless steel sleeve shrink fitted over a 4340 steel shaft and further secured with tapered keys on opposite ends was crated and shipped by air. Upon arrival, the sleeve was found to have cracked longitudinally between the keyways...
Abstract
A roll assembly consisting of a forged AISI type 440A stainless steel sleeve shrink fitted over a 4340 steel shaft and further secured with tapered keys on opposite ends was crated and shipped by air. Upon arrival, the sleeve was found to have cracked longitudinally between the keyways. A roll manufacturer had successfully used the above procedure for many years to make them. Analysis (visual inspection; 150x micrograph of sections etched with a mixture of 2 parts HNO3, 2 parts acetic acid, and 3 parts HCI; electron microscopy; and stress testing) supported the conclusion that superficial working of the metal, probably insufficient hot working, produced a microstructure in which the carbide particles were not broken up and evenly distributed. As a result, the grains were totally surrounded with brittle carbide particles. This facilitated the formation of a crack at a fillet in the keyway. Crack growth was rapid once the crack had initiated, causing brittle fracture to occur.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047598
EISBN: 978-1-62708-217-4
Abstract
Two aircraft-engine tailpipes of 19-9 DL stainless steel (AISI type 651) developed cracks along longitudinal gas tungsten arc butt welds after being in service for more than 1000 h. Binocular-microscope examination of the cracks in both tailpipes revealed granular, brittle-appearing surfaces confined to the HAZs of the welds. Microscopic examination of sections transverse to the weld cracks showed severe intergranular corrosion in the HAZ. The fractures appeared to be caused by loss of corrosion resistance due to sensitization, that could have been induced by the temperatures attained during gas tungsten arc welding. Tests demonstrated the presence of sensitization in the HAZ of the gas tungsten arc weld. The aircraft engine tailpipe failures were due to intergranular corrosion in service of the sensitized structure of the HAZs produced during gas tungsten arc welding. All gas tungsten arc welded tailpipes should be postweld annealed by re-solution treatment to redissolve all particles of carbide in the HAZ. Also, it was suggested that resistance seam welding be used, because there would be no corrosion problem with the faster cooling rate characteristic of this technique.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001336
EISBN: 978-1-62708-215-0
... Abstract Catastrophic pitting corrosion occurred in type 304L stainless steel pipe flange assemblies in an industrial food processor. During regular service the pumped medium was pureed vegetables. In situ maintenance procedures included cleaning of the assemblies with a sodium hypochlorite...
Abstract
Catastrophic pitting corrosion occurred in type 304L stainless steel pipe flange assemblies in an industrial food processor. During regular service the pumped medium was pureed vegetables. In situ maintenance procedures included cleaning of the assemblies with a sodium hypochlorite solution. It was determined that the assemblies failed due to an austenite-martensite galvanic couple activated by a chlorine bearing electrolyte. The martensitic areas resulted from a transformation during cold-forming operations. Solution annealing after forming, revision of the design of the pipe flange assemblies to eliminate the forming operation, and removal of the source of chlorine were recommended.
1