Skip Nav Destination
Close Modal
By
Anthony A. Tipton
By
Wesley D. Pridemore
Search Results for
Airfoils
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 52
Search Results for Airfoils
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 22 Predicted temperature using oxide depth measurements at 60% airfoil height
More
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 23 Predicted temperature using oxide depth measurements at 90% airfoil height
More
Image
(a) Cross section of an airfoil showing a deviation in the position of the ...
Available to PurchasePublished: 30 August 2021
Fig. 25 (a) Cross section of an airfoil showing a deviation in the position of the trailing-edge cooling passage as a result of casting core shift. (b) Schematic showing proper alignment
More
Image
in Metallurgical Investigation of a Turbine Blade and a Vane Failure from Two Marine Engines
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 13 Axial deformation, i.e., bowing, in the turbine airfoil section.
More
Image
Coating features of the vane along the airfoil section. (a) Convex side sho...
Available to Purchase
in Metallurgical Investigation of a Turbine Blade and a Vane Failure from Two Marine Engines
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 16 Coating features of the vane along the airfoil section. (a) Convex side showing intact coating and shrinkage porosity; (b) Coating-matrix interface along convex side; (c) Vane coating and coating-matrix interface along concave side.
More
Image
in Evaluation of Gas Turbine Hot Section Blade Cracking under Oxidation, TMF, and Creep Conditions
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 3 Predicted temperature using oxide depth measurements at 60% airfoil height
More
Image
in Evaluation of Gas Turbine Hot Section Blade Cracking under Oxidation, TMF, and Creep Conditions
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 4 Predicted temperature using oxide depth measurements at 90% airfoil height
More
Image
Airfoil segment from a cast Stellite 31 turbine vane that failed by thermal...
Available to PurchasePublished: 01 June 2019
Fig. 1 Airfoil segment from a cast Stellite 31 turbine vane that failed by thermal fatigue. (a) and (b) Thermal fatigue cracks emanating from a leading edge and progressing along grain boundaries. The microstructure shows evidence of age hardening by intragranular precipitation of carbide
More
Book Chapter
Fatigue Failure of an Aluminum Turbine Impeller
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001366
EISBN: 978-1-62708-215-0
... Abstract An AMS 4126 (7075-T6) aluminum alloy impeller from a radial inflow turbine fractured during commissioning. Initial examination showed that two adjacent vanes had fractured through airfoils in the vicinity of the vane leading edges, and one vane fractured through an airfoil near the hub...
Abstract
An AMS 4126 (7075-T6) aluminum alloy impeller from a radial inflow turbine fractured during commissioning. Initial examination showed that two adjacent vanes had fractured through airfoils in the vicinity of the vane leading edges, and one vane fractured through an airfoil near the hub in the vicinity of the vane trailing edge. Some remaining vanes exhibited radial and transverse cracks in similar locations. Binocular and scanning electron microscope examinations showed that the cracks had been caused by high-cycle fatigue and had progressed from multiple origins on the vane surface. Structural analysis indicated that the fatigue loading probably had been caused by forced excitation, resulting in the impeller vibrating at its resonant frequency. It was recommended that the impeller design, control systems, and material of construction be changed.
Book Chapter
Failure of a Turbine Vane
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046966
EISBN: 978-1-62708-229-7
... Abstract A turbine vane made of cast cobalt-base alloy AMS 5382 (Stellite 31; composition: Co-25.5Cr-10.5Ni-7.5W) was returned from service after an undetermined number of service hours because of crack indications on the airfoil sections. This alloy is cast by the precision investment method...
Abstract
A turbine vane made of cast cobalt-base alloy AMS 5382 (Stellite 31; composition: Co-25.5Cr-10.5Ni-7.5W) was returned from service after an undetermined number of service hours because of crack indications on the airfoil sections. This alloy is cast by the precision investment method. Analysis (visual inspection, 100x/500x metallographic examination of sections etched with a mixture of ferric chloride, hydrochloric acid, and methanol, and bend tests) supported the conclusions that cracking of the airfoil sections was caused by thermal fatigue and was contributed to by low ductility due to age hardening, subsurface oxidation related to intragranular carbides, and high residual tensile macrostresses. No further conclusions could be drawn because of the lack of detailed service history, and no recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090114
EISBN: 978-1-62708-229-7
... holes' surface was not coated. Investigation supported the conclusions that the cracking at the cooling holes was due to grain-boundary oxidation and nitridation at the cooling hole surface, embrittlement and loss of local ductility of the base alloy, temperature gradient from the airfoil surface...
Abstract
The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling holes' surface was not coated. Investigation supported the conclusions that the cracking at the cooling holes was due to grain-boundary oxidation and nitridation at the cooling hole surface, embrittlement and loss of local ductility of the base alloy, temperature gradient from the airfoil surface to the cooling holes, which led to relatively high thermal stresses at the holes located at the thicker sections of the airfoil, and stress concentration of 2.5 at the cooling hole and the presence of relatively high total strain (an inelastic strain of 1.2%) at the cooling hole surface. Recommendations include applying the specially designed methods given in this case study to estimate the metal temperature and stresses in order to predict the life of turbine blades under similar operating conditions.
Book Chapter
Stress-Rupture Characterization in Nickel-Based Superalloy Gas Turbine Engine Components
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001758
EISBN: 978-1-62708-241-9
... Abstract This article describes the visual, fractographic, and metallographic evidence typically encountered when analyzing stress rupture of turbine airfoils. Stress-rupture fractures are generally heavily oxidized, tend to be rough in texture, and are primarily intergranular...
Abstract
This article describes the visual, fractographic, and metallographic evidence typically encountered when analyzing stress rupture of turbine airfoils. Stress-rupture fractures are generally heavily oxidized, tend to be rough in texture, and are primarily intergranular and/or interdendritic in appearance compared to smoother, transgranular fatigue type fractures. Often, gross plastic yielding is visible on a macroscopic scale. Commonly observed microstructural characteristics include creep voiding along grain boundaries and/or interdendritic regions. Internal voids can also nucleate at carbides and other microconstituents, especially in single crystal castings that do not possess grain boundaries.
Image
(a) Photograph of stage 1 turbine blade. Material loss was most severe at t...
Available to PurchasePublished: 30 August 2021
Fig. 22 (a) Photograph of stage 1 turbine blade. Material loss was most severe at the tip and trailing-edge airfoil. (b) Photograph of second-stage turbine vane. Note the rounded discoloration patterns, material loss at the trailing edge, and airfoil perforation (arrow). (c) Optical micrograph
More
Image
Liquid droplet erosion from a low-pressure steam turbine blade that failed ...
Available to PurchasePublished: 30 August 2021
Fig. 16 Liquid droplet erosion from a low-pressure steam turbine blade that failed under fatigue loading. (a) Photograph of leading-edge airfoil, suction side. The lower portion of the airfoil (left) was 400-series stainless steel alloy; the upper portion of the airfoil (right) was clad
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
.... In cases where material is released in the turbine flow path, such as a broken airfoil, downstream components typically suffer secondary damage, and so the first component to fail is typically at the upstream end of the damaged zone ( Fig. 1 ). Fig. 1 Failed gas turbine rotor. From left to right...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Image
Cracked first steps MAR-M302 Turbine engine vane in the as-received conditi...
Available to Purchase
in Metallurgical Investigation of a Turbine Blade and a Vane Failure from Two Marine Engines
> ASM Failure Analysis Case Histories: Offshore, Shipbuilding, and Marine Equipment
Published: 01 June 2019
Fig. 2 Cracked first steps MAR-M302 Turbine engine vane in the as-received condition. (a) Concave airfoil surface; (b) Convex airfoil surface. Metallographic sampling location indicated by arrow M.
More
Image
Schematic of first-stage gas turbine blade that experienced cracking after ...
Available to Purchase
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 20 Schematic of first-stage gas turbine blade that experienced cracking after 32,000 h in service. (a) Sectioning planes at three locations on the blade airfoil. (b) Cross-sectional view of the blade airfoil showing the cooling holes and numbering sequence
More
Image
Schematic of first-stage gas turbine blade that experienced cracking after ...
Available to Purchase
in Evaluation of Gas Turbine Hot Section Blade Cracking under Oxidation, TMF, and Creep Conditions
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Schematic of first-stage gas turbine blade that experienced cracking after 32,000 h in service. (a) Sectioning planes at three locations on the blade airfoil. (b) Cross-sectional view of the blade airfoil showing the cooling holes and numbering sequence
More
Image
(a) Photograph of second-stage turbine blade, with crack location indicated...
Available to PurchasePublished: 30 August 2021
Fig. 8 (a) Photograph of second-stage turbine blade, with crack location indicated by arrow. (b) Optical micrograph of lower-airfoil trailing-edge crack open to the internal surface of the blade airfoil. Etched with Marble’s reagent. (c) Finite-element strain map showing peak strain near crack
More
Image
(a) Photograph of stage 2 blade after service. (b) Optical micrograph of up...
Available to PurchasePublished: 30 August 2021
Fig. 19 (a) Photograph of stage 2 blade after service. (b) Optical micrograph of upper airfoil leading-edge section showing intergranular oxidation and surrounding alloy depletion (white). Etched with Marble’s reagent. (c) Optical micrograph showing general oxidation damage of the airfoil
More
1