Skip Nav Destination
Close Modal
By
Keneth M. Marden, Keith R. Lewis
By
H.S. Khatak, J.B. Gnanamoorthy, P. Rodriguez
By
Philip J. Kenny
By
Samuel J. Lawrence, Richard L. Bodnar
By
G. Mark Tanner
Search Results for
Admiralty brass
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 26
Search Results for Admiralty brass
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Failure Analysis of Admiralty Brass Condenser Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001044
EISBN: 978-1-62708-214-3
... Abstract Inhibited admiralty brass (UNS C44300) condenser tubes used in a natural-gas-fired cogeneration plant failed during testing. Two samples, one from a leaking tube and the other from an on leaking tube, were examined. Chemical analyses were conducted on the tubes and corrosion deposits...
Abstract
Inhibited admiralty brass (UNS C44300) condenser tubes used in a natural-gas-fired cogeneration plant failed during testing. Two samples, one from a leaking tube and the other from an on leaking tube, were examined. Chemical analyses were conducted on the tubes and corrosion deposits. Stress-corrosion cracking was shown to have caused the failure. The most probable corrosive was ammonia or an ammonium compound in the presence of oxygen and water. All of the tubes were replaced.
Book Chapter
Failure of Admiralty Brass Condenser Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001310
EISBN: 978-1-62708-215-0
... Abstract Leaks developed in 22 admiralty brass condenser tubes. The tubes were part of a condenser that was being used to condense steam from a nuclear power plant and had been in operation for less than 2 years. Analysis identified three types of failure modes: stress-corrosion cracking...
Abstract
Leaks developed in 22 admiralty brass condenser tubes. The tubes were part of a condenser that was being used to condense steam from a nuclear power plant and had been in operation for less than 2 years. Analysis identified three types of failure modes: stress-corrosion cracking, corrosion under deposit (pitting and crevice), and dezincification. Fractures were transgranular and typical of stress-corrosion cracking. The primary cause of the corrosion deposit was low-flow conditions in those parts of the condenser where failure occurred. Maintenance of proper flow conditions was recommended.
Book Chapter
Stress-Corrosion Cracking of Admiralty Brass Condenser Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091807
EISBN: 978-1-62708-229-7
... Abstract Failures occurred in admiralty brass condenser tubes in a nuclear plant cooled by freshwater. About 2500 tubes had to be replaced over a span of six years. Investigation (visual inspection, chemical analysis, water chemistry (for both intake and outfall), and corrosion products...
Abstract
Failures occurred in admiralty brass condenser tubes in a nuclear plant cooled by freshwater. About 2500 tubes had to be replaced over a span of six years. Investigation (visual inspection, chemical analysis, water chemistry (for both intake and outfall), and corrosion products in the operating system and on test coupons exposed to the operating environment) supported the conclusion that the failure was caused by microbe-initiated SCC. No recommendations were made.
Book Chapter
Stress-Corrosion Cracking and Galvanic Corrosion of Admiralty Brass
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001651
EISBN: 978-1-62708-229-7
... Abstract Some of the admiralty brass tubes were failing in a heat exchanger. The heat exchanger cooled air by passing river water through the inside of the tubes. The wall thickness of all tubes ranged between 1.19 to 1.27 mm (0.047 to 0.050 in.). General intergranular corrosion occurred...
Abstract
Some of the admiralty brass tubes were failing in a heat exchanger. The heat exchanger cooled air by passing river water through the inside of the tubes. The wall thickness of all tubes ranged between 1.19 to 1.27 mm (0.047 to 0.050 in.). General intergranular corrosion occurred at the inside surfaces of the tubes. Transgranular stress-corrosion cracking, probably the result of sulphates under basic conditions, and dezincification occurred also as the result of galvanic corrosion under the deposits in the tubes. Recommendations were to use a closed-loop water system to eliminate sulphates, ammonia, etc., and to run trials on one unit with tubes of other alloys such as 80-20 Cu-Ni or 70-30 Cu-Ni to evaluate their performance prior to any large scale retubing operations.
Image
Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. ...
Available to PurchasePublished: 01 January 2002
Fig. 10 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Approximately 1 1 4 ×. (b) Blunt transgranular cracking from the water side of tube 1. 40×
More
Image
Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. ...
Available to Purchase
in Failure Analysis of Heat Exchangers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 10 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Original magnification: ~1.25×. (b) Blunt transgranular cracking from the water side of tube 1
More
Image
Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. ...
Available to Purchase
in Corrosion-Fatigue Failure of U-Bend Heat-Exchanger Tubes
> ASM Failure Analysis Case Histories: Oil and Gas Production Equipment
Published: 01 June 2019
Fig. 1 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Approximately 1 1 4 ×. (b) Blunt transgranular cracking from the water side of tube 1. 40×
More
Image
Intergranular attack of admiralty brass in hot water containing a small amo...
Available to PurchasePublished: 15 January 2021
Fig. 38 Intergranular attack of admiralty brass in hot water containing a small amount of sulfuric acid. Original magnification: 150×
More
Image
Intergranular cracks in failed admiralty brass heat exchanger tubes (unetch...
Available to Purchase
in Stress-Corrosion Cracking and Galvanic Corrosion of Admiralty Brass
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Image
Schematic diagram of a turbogenerator oil cooler with Admiralty brass tubes...
Available to Purchase
in Failure Analysis of Brass Tubes
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Book Chapter
Corrosion-Fatigue Failure of U-Bend Heat-Exchanger Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c0048728
EISBN: 978-1-62708-228-0
... Abstract After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube...
Abstract
After being in service for ten years, two admiralty brass heat-exchanger tubes from a cooler in a refinery catalytic reforming unit cracked circumferentially in the area of U-bends. A blunt transgranular cracking with minimal branching propagating from the inside surface of the tube was revealed by metallography which was typical of cracking by corrosion fatigue mechanism. Corrosion deposits on both the inside- and outside-diam surfaces were found in the tubes. The presence of copper, zinc, iron, and small amounts of chloride, sulfur, silicon, tin, and manganese was revealed by energy-dispersive analysis of the deposits. It was interpreted by the hardness values (higher than typical for annealed copper tubing) that the tubes may not have been annealed after the U-bends were formed and thus the role of residual stresses in the crack was revealed. It was concluded that the tubes failed by corrosion fatigue initiated by pitting at the inside-diam surface. The tubes were recommended to be annealed after bending to reduce residual stresses from the bending operation to an acceptable level.
Book Chapter
Failure Analysis of Brass Tubes
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001521
EISBN: 978-1-62708-229-7
... Abstract Admiralty brass (Alloy C44300) cooling tubes which were part of a heat exchanger in a turbogenerator that provided electricity to a manufacturing plant failed. A mixture of non-recirculating city and “spring pit” water flowed through bundles of tubes to cool the oil in which...
Abstract
Admiralty brass (Alloy C44300) cooling tubes which were part of a heat exchanger in a turbogenerator that provided electricity to a manufacturing plant failed. A mixture of non-recirculating city and “spring pit” water flowed through bundles of tubes to cool the oil in which they are immersed. However, a problem developed when several of the brass tubes cracked transversely, allowing cooling water to mix with the oil. The presence of a tensile stress, intergranular cracks, and a corrosion product suggested the tube failures resulted from stress-corrosion cracking. The main corrosion product was cupric hydroxychloride. In addition to switching to a more corrosion-resistant alloy, extreme care should be taken in the manufacturing of the replacement tube bundles to avoid imparting any residual tensile stresses in the tubing. Analyses of city and spring-pit water were recommended also, to determine which contained the least-harmful corrosive chemicals.
Book Chapter
Stress-Corrosion Cracking of a Brass Tube in a Generator Air Cooler Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091703
EISBN: 978-1-62708-229-7
... Abstract An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. The cooling medium for the tubes was water from a river. Air flowed over the finned exterior...
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. The cooling medium for the tubes was water from a river. Air flowed over the finned exterior of the tubes, while water circulated through the tubes. Investigation (visual inspection, leak testing, history review, 100X micrographs etched in potassium dichromate, chemical analysis, and EDS and XRD analysis of internal tube deposits) supported the conclusion that the cause of the tube leaks was ammonia-induced SCC. Because the cracks initiated on the inside surfaces of the tubes and because the river water was not treated before it entered the coolers, the ammonia was likely present in the river water and probably concentrated under the internal deposits. Recommendations included either eliminating the ammonia (prohibitively expensive in cost and time) or using an alternate material (such as a 70Cu-30Ni alloy or a more expensive titanium alloy) that is resistant to ammonia corrosion as well as to chlorides and sulfur species.
Book Chapter
Dezincification of a Chromium-Plated Copper Alloy Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0091378
EISBN: 978-1-62708-219-8
... exfoliated from the base material and cracked. Recommendations included replacing the piping with a more corrosion-resistant material such as red brass (UNS C23000), inhibited Admiralty brass (UNS C44300), or arsenical aluminum brass (UNS C68700). Dezincification Fresh water Perforation Piping...
Abstract
A 12.7 mm (0.5 in.) diam tube was removed from a potable water supply due to leaks. The tube wall thickness was 0.711 mm (0.028 in.) with a thin layer of chromium plate on the OD surface. The tube had been in service for approximately 33 years. Investigation (visual inspection, EDS deposit analysis, metallurgical examination, and unetched magnified images) supported the conclusion that failure occurred due to porous material typical of plug-type dezincification initiating from the inside surface. Where the dezincification had progressed through the tube wall, the chromium plate had exfoliated from the base material and cracked. Recommendations included replacing the piping with a more corrosion-resistant material such as red brass (UNS C23000), inhibited Admiralty brass (UNS C44300), or arsenical aluminum brass (UNS C68700).
Book Chapter
Stress-Corrosion Cracking of a Brass Tube in a Generator Air Cooler Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001313
EISBN: 978-1-62708-215-0
... Abstract An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. Stereomicroscopic examination revealed two small transverse cracks that were within a few millimeters...
Abstract
An arsenical admiralty brass (UNS C44300) finned tube in a generator air cooler unit at a hydroelectric power station failed. The unit had been in operation for approximately 49,000 h. Stereomicroscopic examination revealed two small transverse cracks that were within a few millimeters of the tube end, with one being a through-wall crack. Metallographic examination of sections containing the cracks showed branching secondary cracks and a transgranular cracking mode. The cracks appeared to initiate in pits. EDS analysis of a friable deposit found on the inside diameter of the tube and XRD analysis of crystalline compounds in the deposit indicated the possible presence of ammonia. Failure was attributed to stress-corrosion cracking resulting from ammonia in the cooling water. It was recommended that an alternate tube material, such as a 70Cu-30Ni alloy or a titanium alloy, be used.
Image
Intergranular attack of Admiralty B brass in a hot water containing a small...
Available to PurchasePublished: 01 January 2002
Fig. 38 Intergranular attack of Admiralty B brass in a hot water containing a small amount of sulfuric acid. 150×
More
Image
Straight branched transgranular and intergranular cracks in failed admiralt...
Available to Purchase
in Stress-Corrosion Cracking and Galvanic Corrosion of Admiralty Brass
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Straight branched transgranular and intergranular cracks in failed admiralty brass heat exchanger tubes (unetched, 50×).
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046469
EISBN: 978-1-62708-229-7
... susceptible to dezincification. Recommendations included replacing the material with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant to dezincification. Copper alloy C44300 (inhibited admiralty metal) could be an alternative selection...
Abstract
After about 17 years in service, copper alloy C27000 (yellow brass, 65% Cu) innercooler tubes in an air compressor began leaking cooling water, causing failure and requiring replacement. The tubes were 19 mm in diam and had a wall thickness of 1.3 mm (0.050 in.). The cooling water that flowed through the tubes was generally sanitary (chlorinated) well water; however, treated recirculating water was sometimes used. Analysis (visual inspection, 9x and 75x unetched micrographs, and spectrochemical analysis) showed a thick uniform layer of porous, brittle copper on the inner surface of the tube, extending to a depth of about 0.25 mm (0.010 in.) into the metal, plug-type dezincification extending somewhat deeper into the metal. This supported the conclusion that failure of the tubes was the result of the use of an uninhibited brass that has a high zinc content and therefore is readily susceptible to dezincification. Recommendations included replacing the material with copper alloy C68700 (arsenical aluminum brass), which contains 0.02 to 0.06% As and is highly resistant to dezincification. Copper alloy C44300 (inhibited admiralty metal) could be an alternative selection for this application; however, this alloy is not as resistant to impingement attack as copper alloy C68700.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... be satisfactorily extruded. Corrosion Resistance To meet corrosion requirements, tubing must be resistant to general corrosion, stress-corrosion cracking (SCC), selective leaching (for example, dezincification of brass), and oxygen-cell attack in whatever environments are encountered before service...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... with hydrostatic testing and drying and take steps to ensure that the test water is free of corrosives and the tubes are dry before boxing. Some copper alloys, such as the brasses, are very sensitive to stagnant water conditions, especially if the water contains biological material or chemicals that can...
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
1