Skip Nav Destination
Close Modal
Search Results for
Adiabatic shear
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 35
Search Results for Adiabatic shear
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 21 Evolution of adiabatic shear bands in annealed (95 HRB) 1060 steel with increasing work input. (a) After 2 impacts. (b) After 4 impacts. (c) After 5 impacts. All 660×
More
Image
in The Role of Metallography and Fractography in the Analysis of Gun Tube Failures
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 6 Adiabatic shear (a) eminating from white-etch layer (c). Note variation of microhardness indentations as they proceed into the white-etching layer. Etched in 2% nital.
More
Image
in The Role of Metallography and Fractography in the Analysis of Gun Tube Failures
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 7 Network of adiabatic shear deformation resulting from complex stress state in the gun during detonation. Etched in picral.
More
Image
in The Role of Metallography and Fractography in the Analysis of Gun Tube Failures
> ASM Failure Analysis Case Histories: Failure Modes and Mechanisms
Published: 01 June 2019
Fig. 8 Microhardness indentations (10gf load) in a region of adiabatic shear. A light unresolved substructure is apparent in the shear band. Etched in 2% nital. DIC illumination.
More
Image
in The Role of Impact Energy in Failure of Explosive Cladding of Inconel 625 and Steel
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Image
in The Role of Impact Energy in Failure of Explosive Cladding of Inconel 625 and Steel
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001671
EISBN: 978-1-62708-234-1
... features such as voids, adiabatic shear, and structural surface alterations also indicate the explosion intensity and further allow a comparison of the tube structure near and away from the explosion zone. These, and other metallurgical characteristics, are illustrated and discussed for cases of accidental...
Abstract
Important clues about the probable cause of a gun tube explosion were obtained from a fractographic and metallographic examination of the fragments. The size, distribution, and surface markings of fragments may be used to localize the explosion and deduce its intensity. Microstructural features such as voids, adiabatic shear, and structural surface alterations also indicate the explosion intensity and further allow a comparison of the tube structure near and away from the explosion zone. These, and other metallurgical characteristics, are illustrated and discussed for cases of accidental and deliberately caused explosions of large caliber gun tubes.
Image
in The Role of Impact Energy in Failure of Explosive Cladding of Inconel 625 and Steel
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 11 Several pictures depicting the development of microcracks through the adiabatic shear bands in steel
More
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... stress values will heighten this instability within the material flow [ 12 , 17 ]. By raising this thermomechanical instability above a critical criterion, the plastic deformation will concentrate on local adiabatic sites called adiabatic shear bands (ASB) rather than the whole material [ 12 , 16...
Abstract
Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact energy reduces shear strength significantly, causing the cladding process to fail. The findings reveal the decisive role of plastic strain localization and the associated development of microcracks in cladding failures. An attempt is thus made to determine the optimum cladding parameters for the materials of interest.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
... manner, that is, by shear. He attributed this result to the nature of the stress system associated with edge-to-edge impacts. As a result of the impact loading associated with spalling, the shear strain rate is usually very high, resulting in localized adiabatic heating and concomitant microstructural...
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001271
EISBN: 978-1-62708-215-0
... by a subsequent impact. The mechanism of formation of white bands has been described by investigators as zones of intense adiabatic shear. Zener and Holloman ( Ref 1 ) proposed that the bands resulted from high strain rates that caused shear instability in an otherwise uniformly straining solid. These high...
Abstract
A carbon steel ball-peen hammer ejected a chip that struck the user's eye. Failure occurred when two hammers were struck together during an attempt to free a universal joint from an automotive drive shaft. Two samples were cut from the face of the hammer one through the chipped area on the chamfer and the other from the undamaged area on the chamfer. The shape and texture of the fracture surfaces were typical of spalling. The fracture was conchoidal and exhibited a complete lack of plastic deformation. White etching bands that intersected the face and chamfer were revealed during metallographic examination. Fracture occurred through a white band. Failure was attributed to formation of envelopes of untempered martensite under the chamfer that ruptured explosively during service.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0006548
EISBN: 978-1-62708-180-1
... and Steel Institute AMS Aerospace Material Specification (of SAE) ANSI American National Standards Institute AOD argon-oxygen decarburization APB acid-producing bacteria API American Petroleum Institute AREMA American Railway Engineering and Maintenance-of-Way Association ASB adiabatic shear band ASIP...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003538
EISBN: 978-1-62708-180-1
.... The fracture process proceeds by crack growth toward the surface of the specimen, culminating in a region of slant fracture. Radial marks may or may not be present between the central fibrous zone and the shear zone near the surface. When the central fibrous region is examined at the microscale...
Abstract
This article provides a description of the microscale models and mechanisms for deformation and fracture. Macroscale and microscale appearances of ductile and brittle fracture are discussed for various specimen geometries and loading conditions. The article reviews the general geometric factors and materials aspects that influence the stress-strain behavior and fracture of ductile metals. It highlights fractures arising from manufacturing imperfections and stress raisers. The article presents a root cause failure analysis case history to illustrate some of the fractography concepts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006775
EISBN: 978-1-62708-295-2
.... The fracture process proceeds by crack growth toward the surface of the specimen, culminating in a region of slant fracture. Radial marks may or may not be present between the central fibrous zone and the shear zone near the surface. When the central fibrous region is examined at the microscale...
Abstract
This article focuses on characterizing the fracture-surface appearance at the microscale and contains some discussion on both crack nucleation and propagation mechanisms that cause the fracture appearance. It begins with a discussion on microscale models and mechanisms for deformation and fracture. Next, the mechanisms of void nucleation and void coalescence are briefly described. Macroscale and microscale appearances of ductile and brittle fracture are then discussed for various specimen geometries (smooth cylindrical and prismatic) and loading conditions (e.g., tension compression, bending, torsion). Finally, the factors influencing the appearance of a fracture surface and various imperfections or stress raisers are described, followed by a root-cause failure analysis case history to illustrate some of these fractography concepts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006791
EISBN: 978-1-62708-295-2
.... If a rising contact severity (increased combination of contact pressure and sliding speed) causes the rate of thermal softening to exceed the rate of work hardening, the plastic deformation can become unstable, forming an adiabatic shear instability ( Ref 39 ). The observations of Hershberger et al. ( Ref 39...
Abstract
Friction and wear are important when considering the operation and efficiency of components and mechanical systems. Among the different types and mechanisms of wear, adhesive wear is very serious. Adhesion results in a high coefficient of friction as well as in serious damage to the contacting surfaces. In extreme cases, it may lead to complete prevention of sliding; as such, adhesive wear represents one of the fundamental causes of failure for most metal sliding contacts, accounting for approximately 70% of typical component failures. This article discusses the mechanism and failure modes of adhesive wear including scoring, scuffing, seizure, and galling, and describes the processes involved in classic laboratory-type and standardized tests for the evaluation of adhesive wear. It includes information on standardized galling tests, twist compression, slider-on-flat-surface, load-scanning, and scratch tests. After a discussion on gear scuffing, information on the material-dependent adhesive wear and factors preventing adhesive wear is provided.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001849
EISBN: 978-1-62708-241-9
... is shown in Fig. 7 . In addition, plastic flow apparent on the surface and subsurface layer clearly indicates the presence of severe sliding conditions probably accompanied by localized heating (high shear stresses, frictional, or adiabatic heat generation), see Fig. 8 . Fig. 7 Optical micrograph...
Abstract
Spalled fragments from the work rolls of a steel bar straightening machine were received for failure analysis. Visual inspection coupled with optical and scanning electron microscopy were used as the principal analytical techniques for the investigation. Fractographic analysis revealed the presence of a characteristic fatigue crack propagation pattern (beach marks) and radial chevron marks indicating the occurrence of final overload through a brittle intergranular fracture. The collected evidence suggests that surface-initiated cracks propagated by fatigue led to spalling, resulting in severe work roll damage as well as machine downtime and increased maintenance costs.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001815
EISBN: 978-1-62708-180-1
... appear to follow these boundaries. It has been noted that some academic studies refer to this same structure as being a transformed shear band product formed by adiabatic shear. Contact Fatigue (Spalling) Spalling, in general, is not considered an initial mode of failure but rather a continuation...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This article reviews the major types of gears and the basic principles of gear-tooth contact. It discusses the loading conditions and stresses that effect gear strength and durability. The article provides information on different gear materials, the common types and causes of gear failures, and the procedures employed to analyze them. Finally, it presents a chosen few examples to illustrate a systematic approach to the failure examination.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
.... , and Jiang Z. , The Failure Models Induced by White Layers During Impact Wear , Wear , Vol 185 , 1995 , p 17 – 22 23. Zhang B. , Liu Y. , Shen W. , Wang Y. , Tang X. , and Wang X. , A Study on the Behaviour of Adiabatic Shear Bands in Impact Wear , Wear , Vol...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
... definitely been transformed. Each area has distinct boundaries, and the oncoming cracks appear to follow these boundaries. It has been noted that some academic studies refer to this same structure as being a transformed shear band product formed by adiabatic shear. A more detailed review of microstructural...
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
1