Skip Nav Destination
Close Modal
Search Results for
Adhesive joints
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 51 Search Results for
Adhesive joints
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001546
EISBN: 978-1-62708-217-4
... microcracks between adjacent discontinuities supported a hydrogen blistering diagnosis. Adhesive joints Blistering Chemical milling Extrusions Microcracking Pitting (corrosion) 2024-T3 2024-T4 UNS A92024 Hydrogen damage and embrittlement Fatigue fracture Fatigue Microcracking in Alclad 2024...
Abstract
A longeron assembly constructed of Alclad 2024, some parts being in the T3 condition, others in the T42 condition, failed at a rivet hole. Plastic deformation at the crack site was found, but no plastic deformation was found in similar failed components. It was concluded that the numerous hairline cracks in the Alclad layer adjacent to the main fracture were fatigue cracks. In another case, bonded samples of 2024-T3 sheet were fatigue tested at various stress levels. Failures could be separated into three groups: those that failed in the adhesive bond, those that failed in the base material, and those that exhibited a dual failure. The last category failed in the adhesive bond and also showed a type of pitting on one face of the base material. In a third case, a 2024-T4 extrusion section was found to exhibit blistering after chemical milling. The presence of interconnecting microcracks between adjacent discontinuities supported a hydrogen blistering diagnosis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001548
EISBN: 978-1-62708-219-8
... by a supplier. In less than one year, the panels began to delaminate and the aluminum began to crack. It was found that the failure was the result of chloride-induced intergranular corrosion caused by chemicals in the adhesive and excessive moisture in the wood introduced during manufacturing. Adhesive...
Abstract
In 1975, a manufacturer was awarded a contract to produce modular air-traffic control towers for the U.S. Navy. The specifications called for painted steel siding, but the manufacturer convinced the Navy to substitute aluminum-bonded-to-plywood panels that were provided by a supplier. In less than one year, the panels began to delaminate and the aluminum began to crack. It was found that the failure was the result of chloride-induced intergranular corrosion caused by chemicals in the adhesive and excessive moisture in the wood introduced during manufacturing.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001749
EISBN: 978-1-62708-215-0
... by explosion. 0.88×. Loctite adhesive was used as a sealant to prevent loosening of the joint between the two dissimilar metals as they expanded and contracted at different rates in the hot sun and during cool nights. Close examination of the threaded interface ( Fig. 2 ) clearly indicated use...
Abstract
An oxygen line that was part of a mobile, truck -mounted oxygen-acetylene welding unit exploded in service. Analysis revealed that the failure occurred at the flexible hose-to-valve connection. It was further determined that a steel adapter had been installed at the point of failure to make the connection. Use of the adapter which joined with a brass nipple, created an unacceptable dissimilar metal joint. The steel also provided a source for the generation of sparks. Loctite, a hydrocarbon sealant that is highly flammable and explosive in contact with pure oxygen, had been used to seal the threaded joint. It was recommended that only brass fittings be used to assemble removable joints and that use of washers, sealants, and hydrocarbon lubricants be strictly avoided.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006782
EISBN: 978-1-62708-295-2
... of a SiF<sub>4</sub> Transport Hose. On-Site Examination Laboratory Examination Use of Coatings and Linings Conversion Coatings Prevention of Environmental- and Corrosion-Related Failures of Nonmetals Compatibility between Polymers and Environments Compatibility between Polymers and Adhesives...
Abstract
Corrosion is the deterioration of a material by a reaction of that material with its environment. The realization that corrosion control can be profitable has been acknowledged repeatedly by industry, typically following costly business interruptions. This article describes the electrochemical nature of corrosion and provides the typical analysis of environmental- and corrosion-related failures. It presents common methods of testing of laboratory corrosion and discusses the processes involved in the prevention of environmental- and corrosion-related failures of metals and nonmetals.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003571
EISBN: 978-1-62708-180-1
... gears and cams of various machines, tires, break pads, conveyors, hoppers, automobile body parts, aircraft, spacecrafts, hip/knee joint replacement, roller-skating wheels, and household appliances (washing machine, tubs, etc.). Wear of material parts is a very common cause of failure or low working life...
Abstract
Plastics or polymers are used in a variety of engineering and nonengineering applications where they are subjected to surface damage and wear. This article discusses the classification of polymer wear mechanisms based on the methodologies of defining the types of wear. The first classification is based on the two-term model that divides wear mechanisms into interfacial and bulk or cohesive. The second is based on the perceived wear mechanism. The third classification is specific to polymers and draws the distinction based on mechanical properties of polymers. In this classification, wear study is separated as elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The article describes the effects of environment and lubricant on the wear failures of polymers. It presents a case study on nylon as a tribological material. The article explains the wear failure of an antifriction bearing, a nylon driving gear, and a polyoxymethylene gear wheel.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... from stress concentrations at the corners of the square-shaped windows ( Fig. 7 ). The subsequent accident investigation revealed that a failure at the lap joints between the skins of the upper and lower fuselage panels was caused by disbonding of the adhesive between the inner and outer skin...
Abstract
This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... (a) Schematic of the third-body theory. (b) Graph of debris flow concept as a function of debris layer thickness. Adapted from Ref 62 Fig. 18 Illustration of the contact oxygenation concept to formalize the transition from pure abrasive to composite abrasive-adhesive fretting scar interface...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006789
EISBN: 978-1-62708-295-2
..., and damage in metal-to-metal tribosystems is by tribo-oxidative wear only, because wear removes any crack nucleated on the surface. In metal-to-nonmetal and plastic-to-plastic tribosystems, adhesive interactions predominate, and tribo-oxidation does not occur. Fig. 7 Fretting fatigue in riveted joints...
Abstract
This article considers the main characteristics of wear mechanisms and how they can be identified. Some identification examples are reported, with the warning that this task can be difficult because of the presence of disturbing factors such as contaminants or possible additional damage of the worn products after the tribological process. Then, the article describes some examples of wear processes, considering possible transitions and/or interactions of the mechanism of fretting wear, rolling-sliding wear, abrasive wear, and solid-particle erosion wear. The role of tribological parameters on the material response is presented using the wear map concept, which is very useful and informative in several respects. The article concludes with guidelines for the selection of suitable surface treatments to avoid wear failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001667
EISBN: 978-1-62708-235-8
... Metallography Welded joints Ti-6Al-4V Joining-related failures Introduction History of the Weldment Equipment Procedure Results and Discussion Conclusions Acknowledgments References References 1. Donachie M. J. , “Introduction to Titanium and Titanium Alloys,” Titanium...
Abstract
Nondestructive metallographic examination of materials frequently must be performed on-site when the component in question cannot be moved or destructively examined. Often, it is imperative that specific microstructural information (i.e., material type, heat treatment condition, homogeneity, etc.) be obtained either before initial use of a component, or before the use of a component can be safely resumed. In this paper, the use of standard metallurgical laboratory equipment, and the procedures required to conduct nondestructive on-site metallographic analyses of engineering materials, is presented. As an example, the materials and metallographic techniques employed in an actual on-site investigation of a gas tungsten-arc weldment joining two large diameter Ti-6Al-4V alloy cylinders are discussed in depth to illustrate what can be accomplished.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003524
EISBN: 978-1-62708-180-1
... the fragments of broken components which, when assembled and photographed, may indicate the sequence in which fractures occurred. Figure 2 shows a lug that was part of a pin-joint assembly; failure occurred when the pin broke out of the lug. With the broken pieces of the lug fitted together, it is apparent...
Abstract
This article describes the preliminary stages and general procedures, techniques, and precautions employed in the investigation and analysis of metallurgical failures that occur in service. The most common causes of failure characteristics are described for fracture, corrosion, and wear failures. The article provides information on the synthesis and interpretation of results from the investigation. Finally, it presents key guidelines for conducting a failure analysis.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001141
EISBN: 978-1-62708-227-3
... the bilge keel in other ships and may be a nuisance in the future, the hull integrity of the ships is not threatened and major repairs are not needed. Lamellar tearing Ship plate Welded joints Fe-0.16C-0.68Mn Joining-related failures Corrosion fatigue Introduction General Observations...
Abstract
During a refit of a twenty-year-old Naval destroyer, two cracks were found on the inside of the killed carbon-manganese steel hull plate at the forward end of the boiler room. The cracks coincided with the location of the top and bottom plates of the bilge keel. Metallurgical examination of sections cut from the cracked area identified lamellar tearing as the principle cause of the cracking. This was surprising in 6 mm thick hull plates. Corrosion fatigue and general corrosion also contributed to hull plate perforation. Although it is probable that more lamellar tears exist near the bilge keel in other ships and may be a nuisance in the future, the hull integrity of the ships is not threatened and major repairs are not needed.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001840
EISBN: 978-1-62708-241-9
... shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact...
Abstract
Explosive cladding is a viable method for cladding different materials together, but the complicated behavior of materials under ballistic impacts raises the probability of interfacial shear failure. To better understand the relationship between impact energy and interfacial shear, investigators conducted an extensive study on the shear strength of explosively cladded Inconel 625 and plain carbon steel samples. They found that by increasing impact energy, the adhesion strength of the resulting cladding can be improved. Beyond a certain point, however, additional impact energy reduces shear strength significantly, causing the cladding process to fail. The findings reveal the decisive role of plastic strain localization and the associated development of microcracks in cladding failures. An attempt is thus made to determine the optimum cladding parameters for the materials of interest.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001391
EISBN: 978-1-62708-215-0
... at this critical interface. This meant that not only was there no ceramic-to-metal bond fixing the termination, but there also was no epoxy adhesive bond. The amount of resin separation varied from chip to chip, with those with worst-case adhesion exhibiting the most resin separation and those off the shelf...
Abstract
Several surface-mount chip resistor assemblies failed during monthly thermal shock testing and in the field. The resistor exhibited a failure mode characterized by a rise in resistance out of tolerance for the system. Representative samples from each step in the manufacturing process were selected for analysis, along with additional samples representing the various resistor failures. Visual examination revealed two different types of termination failures: total delamination and partial delamination. Electron probe microanalysis confirmed that the fracture occurred at the end of the termination. Transverse sections from each of the groups were examined metallographically. Consistent interfacial separation was noted. Fourier transform infrared and EDS analyses were also performed. It was concluded that low wraparound termination strength of the resistors had caused unacceptable increases in the resistance values, resulting in circuit nonperformance at inappropriate times. The low termination strength was attributed to deficient chip design for the intended materials and manufacturing process and exacerbated by the presence of polymeric contamination at the termination interface.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001440
EISBN: 978-1-62708-235-8
... a welded-on patch plate or to employ one of the high-strength, non-metallic adhesives. Explosions Gas cylinders Soldered joints Tensile stress 50Pb-50Sn Plate steel Intergranular fracture Liquid metal induced embrittlement Reference is made in other cases in this series of Reports...
Abstract
A portable propane container with a name-plate soldered onto it exploded in service. When the vessel was inspected afterwards, it was found to have developed a crack in the top end plate. A portion of the end plate cut out to include the midlength and one termination of the crack was examined microscopically. This revealed that the crack was associated with intergranular penetration by molten metal. The microstructure in general was indicative of a good-quality mild steel. It was evident from that solder that was responsible for the penetration and that fused brass from the hand wheel had not played any part. Tensile stress was present at the time of the failure sufficiently high to enable solder penetration to take place. The use of soft solder as a medium for attaching name-plates directly on to stressed steel parts is not recommended. It would be preferable to use a welded-on patch plate or to employ one of the high-strength, non-metallic adhesives.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.homegoods.c9001610
EISBN: 978-1-62708-222-8
... on Latex Allergy,” J. Amer. Acad. Derm. , July 1998 , pp. 98 – 106 . 2. Yang J. and Merritt K. : “Detection of Antibodies Against Corrosion Products in Patients After C-Cr Total Joint Replacements,” J. Biomed. Mater. Res. , 1994 , 28 , pp. 1249 – 58 . 3. Doran F...
Abstract
This investigation characterizes five surgical stainless steel piercings and one niobium piercing that caused adverse reactions during use, culminating with the removal of the jewelry. Chemical composition shows that none of the materials are in accordance with ISO standards for surgical implant materials. Additionally, none of the stainless steel piercings passed the pitting-resistance criterion of ISO 5832-1, which implies that [%Cr + 3.3(%Mo)] > 26. Under microscopic examination, most of the jewelry revealed the intense presence of linear irregularities on the surface. The lack of resistance to pitting corrosion associated with the poor surface finishing of the stainless steel jewelry may induce localized corrosion, promoting the release of cytotoxic metallic ions (such as Cr, Ni, and Mo) in the local tissue, which can promote several types of adverse effects in the human body, including allergic reactions. The adverse reaction to the niobium jewelry could not be directly associated with the liberation of niobium ions or the residual presence of cytotoxic elements such as Co, Ni, Mo, and Cr. The poor surface finish of the niobium jewelry seems to be the only variable of the material that may promote adverse reactions.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001835
EISBN: 978-1-62708-241-9
.../j.engfailanal.2011.03.024 10. Krishnaraj N. , Srinivasan P.B. , Muthupandi V. : Investigation of a mounting bolt failure in an automobile air brake assembly . Fail. Anal. Prev . 3 ( 5 ), 69 – 72 ( 2003 ) 11. VDI 2230 Part 1: Systematic Calculation of High Duty Bolted Joints...
Abstract
Wind turbine blades are secured by a number of high-strength bolts. The failure of one such bolt, which caused a turbine blade to detach, was investigated to determine why it fractured. Based on the results of a detailed analysis, consisting of stress calculations, chemical composition testing, metallurgical examination, mechanical property testing, and fractographic analysis, it was determined that the bolt failed by fatigue accelerated by stress concentration at low temperatures. The investigation also provided suggestions for avoiding similar failures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
... used in combination with adhesive bonding to improve the integrity of highly stressed joints. The usual bolts, pins, rivets, and blind fasteners are used for composites; however, the many problems encountered have stimulated the development and testing of numerous special-purpose fasteners and systems...
Abstract
This article discusses different types of mechanical fasteners, including threaded fasteners, rivets, blind fasteners, pin fasteners, special-purpose fasteners, and fasteners used with composite materials. It describes the origins and causes of fastener failures and with illustrative examples. Fatigue fracture in threaded fasteners and fretting in bolted machine parts are also discussed. The article provides a description of the different types of corrosion, such as atmospheric corrosion and liquid-immersion corrosion, in threaded fasteners. It also provides information on stress-corrosion cracking, hydrogen embrittlement, and liquid-metal embrittlement of bolts and nuts. The article explains the most commonly used protective metal coatings for ferrous metal fasteners. Zinc, cadmium, and aluminum are commonly used for such coatings. The article also illustrates the performance of the fasteners at elevated temperatures and concludes with a discussion on fastener failures in composites.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... related to fretting wear. fretting wear impact fretting mechanical components normal load residual stress rolling-element bearings slip surface finish vibration frequency FRETTING is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature...
Abstract
This article reviews the general characteristics of fretting wear in mechanical components with an emphasis on steel. It focuses on the effects of physical variables and the environment on fretting wear. The variables include the amplitude of slip, normal load, frequency of vibration, type of contact and vibration, impact fretting, surface finish, and residual stresses. The form, composition, and role of the debris are briefly discussed. The article also describes the measurement, mechanism, and prevention of fretting wear. It concludes with several examples of failures related to fretting wear.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001133
EISBN: 978-1-62708-214-3
... did not occur during the sintering thermal cycle. It was recommended that the prosthetic manufacturer investigate atmosphere controls for all thermal cycles prior to coating. Adhesion Bonding strength Interface reactions Powder coating Surgical implants ASTM F75 UNS R30075 Surface...
Abstract
A femoral knee implant was returned to the casting vendor for analysis after exhibiting poor bond strength between the cast substrate and a sintered porous coating. Both the coating and the substrate were manufactured from a cobalt-chromium-molybdenum alloy. Metallographic analysis indicated that a decarburized layer existed on all surfaces of the casting, which prevented bonding during the sintering thermal cycle. Bead-to-bead bonding within the coating appeared sufficient, and no decarburized layer was present on the bead surfaces. It was concluded that the decarburization did not occur during the sintering thermal cycle. It was recommended that the prosthetic manufacturer investigate atmosphere controls for all thermal cycles prior to coating.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4
... 7075-T6 fasteners. (b) Typical cracked fastener head. (c) Typical head cracks produced by installing fasteners in misaligned holes during testing Fig. 3 Schematic showing the springlike effect of loading conditions on bolted joints. (a) Theoretical load condition for an elastic fastener...
Abstract
This article first provides an overview of the types of mechanical fasteners. This is followed by sections providing information on fastener quality and counterfeit fasteners, as well as fastener loads. Then, the article discusses common causes of fastener failures, namely environmental effects, manufacturing discrepancies, improper use, or incorrect installation. Next, it describes fastener failure origins and fretting. Types of corrosion in threaded fasteners and their preventive measures are then covered. The performance of fasteners at elevated temperatures is addressed. Further, the article discusses the types of rivet, blind fastener, and pin fastener failures. Finally, it provides information on the mechanism of fastener failures in composites.