Skip Nav Destination
Close Modal
Search Results for
ASTM F136 (alpha-beta titanium alloy)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1 Search Results for
ASTM F136 (alpha-beta titanium alloy)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001801
EISBN: 978-1-62708-241-9
... fixation device fracture surface damage titanium alloy notches roughness metallography fatigue crack growth rates ASTM F136 (alpha-beta titanium alloy) UNS R56401 Introduction The Harrington rod, developed in 1953 by Paul Harrington, a professor of orthopedic surgery at Baylor College...
Abstract
Both rods in a Harrington rod cervical stent failed after a short time in service. Metallurgical analysis revealed a significant number of notches as well as enlarged grain size in one of the two rods, rough shallow-cracked surfaces along the bend profiles, possible signs of corrosion, and fractures (on both rods) near indentations imparted by retaining clamps. The observations suggest that surface roughness and bending defects initiated cracking that led to the fatigue failure of the compromised rod, followed some time later by the overload fracture of the second rod.