Skip Nav Destination
Close Modal
By
David J. Kotwica
By
Luis A. Ganhao, Jorge J. Perdomo, James McVay, Antonio Seijas
Search Results for
ASTM A213 grade T11
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7
Search Results for ASTM A213 grade T11
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Return bend made of ASTM A213, grade T11, ferritic steel that ruptured beca...
Available to PurchasePublished: 01 January 2002
Fig. 3 Return bend made of ASTM A213, grade T11, ferritic steel that ruptured because it contained a large number of inclusions. (a) Overall view of the return bend showing rupture. (b) Micrograph of an unetched specimen showing high concentration of inclusions. 400×. (c) Micrograph
More
Image
Return bend made of ASTM A213, grade T11, ferritic steel that ruptured beca...
Available to Purchase
in Rupture of a Ferritic Steel Return Bend Because of Inclusions
> ASM Failure Analysis Case Histories: Chemical Processing Equipment
Published: 01 June 2019
Fig. 1 Return bend made of ASTM A213, grade T11, ferritic steel that ruptured because it contained a large number of inclusions. (a) Overall view of the return bend showing rupture. (b) Micrograph of an unetched specimen showing high concentration of inclusions. 400×. (c) Micrograph
More
Image
Return bend made of ASTM A213, grade T11, ferritic steel that ruptured beca...
Available to Purchase
in Failures of Pressure Vessels and Process Piping
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 5 Return bend made of ASTM A213, grade T11, ferritic steel that ruptured because it contained a large number of inclusions. (a) Overall view of the return bend showing rupture. (b) Micrograph of an unetched specimen showing high concentration of inclusions. Original magnification: 400
More
Book Chapter
Graphitization-Related Failure of a Low-Alloy Steel Superheater Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001337
EISBN: 978-1-62708-215-0
... with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage. Boiler tubes Creep (materials) Graphitization, Heating effects Mechanical properties Microstructural effects Overheating ASTM A209 grade T1 UNS K11522 High-temperature corrosion and oxidation...
Abstract
A carbon-molybdenum (ASTM A209 Grade T1) steel superheater tube section in an 8.6 MPa (1250 psig) boiler cracked because of long-term overheating damage that resulted from prolonged exposure to metal temperatures between 482 deg C (900 deg F) and 551 deg C (1025 deg F). The outer diameter of the tube exhibited a crack (fissure) oriented approximately 45 deg to the longitudinal axis and 3.8 cm (1.5 in.) long. The inner diameter surface showed a fissure in the same location and orientation. Microstructure at the failure near the outer diameter surface exhibited evidence of creep cracking and creep void formation at the fissure. A nearly continuous band of graphite nodules was observed on the surface of the fissure. In addition to the graphite band formation, the microstructure near the failure exhibited carbide spheroidization from long-term overheating in all the tube regions examined. It was concluded that preferential nucleations of graphite nodules in a series of bands weakened the steel locally, producing preferred fracture paths. Formation of these graphite bands probably expedited the creep failure of the tube. Future failures may be avoided by using low-alloy steels with chromium additions such as ASTM A213 Grade T11 or T22, which are resistant to graphitization damage.
Book Chapter
Rupture of a Ferritic Steel Return Bend Because of Inclusions
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048772
EISBN: 978-1-62708-220-4
... Abstract A return bend (made from ASTM A213, grade T11, ferritic steel) from a triolefin-unit heater ruptured after two years in service. The unit operated at 2410 kPa, with a hydrocarbon feed stream (85% propylene) entering at 260 to 290 deg C and leaving at 425 to 480 deg C. The fracture...
Abstract
A return bend (made from ASTM A213, grade T11, ferritic steel) from a triolefin-unit heater ruptured after two years in service. The unit operated at 2410 kPa, with a hydrocarbon feed stream (85% propylene) entering at 260 to 290 deg C and leaving at 425 to 480 deg C. The fracture was found to terminate at the welds that joined the bend to the pipeline. A high concentration of both small and large inclusions was exhibited by the metallographic examination of the steel near the fracture. Branched cracks similar to those produced by stress corrosion of steel were observed in a section through the fireside edge of the fracture surface. Scale was observed over most of the crack path which acted as a stress raiser. The effect of the oxide was magnified during thermal cycles because of differential thermal expansion, with the steel having a greater expansion coefficient than the scale. It was recommended that material that is intended for critical applications where failure cannot be tolerated should be non-destructively examined.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
.... Example 2: Rupture of a Ferritic Steel Return Bend Because of Inclusions After 2 years of service, a return bend from a triolefin-unit heater ruptured ( Fig. 3a ). The bend was made from 115-mm (4 1 2 -in.) schedule 40 (6.0 mm, or 0.237-in., wall thickness) pipe of ASTM A213, grade T11...
Abstract
This article discusses the effect of using unsuitable alloys, metallurgical discontinuities, fabrication practices, and stress raisers on the failure of a pressure vessel. It provides information on pressure vessels made of composite materials and their welding practices. The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples.
Book Chapter
Failures of Pressure Vessels and Process Piping
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
..., or 0.237 in., wall thickness) pipe of ASTM A213, grade T11 (1.25Cr-0.5Mo) ferritic steel. The unit operated at 2410 kPa (350 psi), with a hydrocarbon feed stream (85% propylene) entering at 260 to 290 °C (500 to 550 °F) and leaving at 425 to 480 °C (800 to 900 °F). The temperature of the combustion gas...
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.