Skip Nav Destination
Close Modal
Search Results for
AM355
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2 Search Results for
AM355
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001081
EISBN: 978-1-62708-214-3
... Abstract Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from...
Abstract
Several compressor disks in military fighter and trainer aircraft gas turbine engines cracked prematurely in the bolt hole regions. The disks were made of precipitation-hardened AM355 martensitic stainless steel. Experimental and analytical work was performed on specimens from the fifth-stage compressor disk (judged to be the most crack-prone disk in the compressor) to determine the cause of the failures. Failure was attributed to high-strain low-cycle fatigue during service. It was also determined that the cyclic engine usage assumed in the original life calculations had been under estimated, which led to low-cycle fatigue cracking earlier than expected. Fracture mechanics analysis of the disks was carried out to assess their damage tolerance and to predict safe inspection intervals.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001294
EISBN: 978-1-62708-215-0
... assembly passes a preflight helium pressure test. However a future design should use the same material for the poppet and bellows so that the final heat treatment will produce an assembly not susceptible to IGA. Booster rockets Heating effects Sensitizing Tempering UNS S35500 UNS S35080 AM355...
Abstract
A precipitation-hardened stainless steel poppet valve assembly used to shut off the flow of hydrazine fuel to an auxiliary power unit was found to leak. SEM and optical micrographs revealed that the final heat treatment designed for the AM-350 bellows material rendered the AM-355 poppet susceptible to intergranular corrosive attack (IGA) from a decontaminant containing hydroxy-acetic acid. This attack provided pathways for which fluid could leak across the sealing surface in the closed condition. It was concluded that the current design is flight worthy if the poppet valve assembly passes a preflight helium pressure test. However a future design should use the same material for the poppet and bellows so that the final heat treatment will produce an assembly not susceptible to IGA.