Skip Nav Destination
Close Modal
Search Results for
AFNOR Z30C13
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1 Search Results for
AFNOR Z30C13
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001352
EISBN: 978-1-62708-215-0
... Abstract Repeated failures of high-pressure ball valves were reported in a chemical plant. The ball valves were made of AFNOR Z30C13 martensitic stainless steel. Initial examination of the valves showed that failure occurred in a weld at the ball/stem junction end of austenitic stainless steel...
Abstract
Repeated failures of high-pressure ball valves were reported in a chemical plant. The ball valves were made of AFNOR Z30C13 martensitic stainless steel. Initial examination of the valves showed that failure occurred in a weld at the ball/stem junction end of austenitic stainless steel sleeves that had been welded to the valve stem at both ends. Metallographic examination showed that a crack had been introduced into the weld by improper weld heat treatment. Stress concentration at the weld location resulting from an abrupt change in cross section facilitated easy propagation of the crack during operation. Proper weld heat treatment was recommended, along with avoidance of abrupt change in cross section near the weld. Due penetrant testing at the ball stem junction before and after heat treatment was also suggested.