1-20 of 34

Search Results for 7075-T6

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006402
EISBN: 978-1-62708-217-4
... Abstract New aircraft wing panels extruded from 7075-T6 aluminum exhibited an unusual pattern of circular black interrupted lines, which could not be removed by scouring or light sanding. The panels, subsequent to profiling and machining, were required to be penetrated inspected, shot peened...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001541
EISBN: 978-1-62708-235-8
... Abstract A forging of 7075-T6 aluminum alloy, which formed a support for the cylinder of a cargo door, cracked at an attachment hole. Fluorescent penetrant inspection showed the crack ran above and below the hole out onto the machined flat surface of the flange. A 6500x electron fractograph...
Image
Published: 01 January 2002
Fig. 3 Cracked HL22-8 aluminum alloy 7075-T6 fasteners. (a) and (b) Typical cracked fastener head. (c) Typical head cracks produced by installing fasteners in misaligned holes during testing More
Image
Published: 01 January 2002
Fig. 46 Crack propagation in shear bands in a 7075-T6 plate specimen. Shear banding has occurred on four planes of high shear stress (two containing the width direction and two containing the thickness direction). Crack initiation has occurred in multiple locations, including the edge More
Image
Published: 01 January 2002
Fig. 86 Fracture on essentially one plane of high shear stress in a 7075-T6 cylindrical tensile specimen. There is a small flat region in the center of the specimen (not visible in photograph) that does not extend to the surface of the specimen. No fracture surface markings exist to indicate More
Image
Published: 01 January 2002
Fig. 20 Fatigue-fracture zones in aluminum alloy 7075-T6 plates. (a) Fatigue crack that grew as a flat-face fracture with a shallow convex crack front. (b) Change in orientation of fatigue fracture from plane strain (arrow A) to plane stress (arrow B). More
Image
Published: 01 January 2002
Fig. 7 Fractured lug of an alloy 7075-T6 forging. Arrows show sites at machined hole where stress-corrosion cracks originated because of stress acting across the short transverse grain direction. Keller's reagent. 2× More
Image
Published: 15 January 2021
Fig. 46 Crack propagation in shear bands in a 7075-T6 titanium alloy plate specimen. Shear banding occurred on four planes of high shear stress (two containing the width direction and two containing the thickness direction). Crack initiation occurred in multiple locations, including the edge More
Image
Published: 15 January 2021
Fig. 86 Fracture on essentially one plane of high shear stress in a 7075-T6 titanium alloy cylindrical tensile specimen. There is a small flat region in the center of the specimen (not visible in photograph) that does not extend to the surface of the specimen. No fracture-surface markings More
Image
Published: 15 January 2021
Fig. 29 Fatigue fracture zones in aluminum alloy 7075-T6 plates. (a) Fatigue crack that grew as a flat-face fracture with a shallow convex crack front. (b) Change in orientation of fatigue fracture from plane strain (arrow A) to plane stress (arrow B) More
Image
Published: 15 January 2021
Fig. 46 Composite micrograph showing the grain structure of aluminum alloy 7075-T6 plate. Source: Ref 8 More
Image
Published: 30 August 2021
Fig. 2 (a) Cracked HL 22-8 aluminum alloy 7075-T6 fasteners. (b) Typical cracked fastener head. (c) Typical head cracks produced by installing fasteners in misaligned holes during testing More
Image
Published: 01 June 2019
Fig. 1 Forged aluminum alloy 7075-T6 receiver from an M16 rifle that failed by exfoliation corrosion. (a) Rifle receiver. 0.7×. Similar receivers were forged from three different materials to investigate the effects of processing on exfoliation resistance ( Table 1 ). Section A-A: (b), (c More
Image
Published: 01 June 2019
Fig. 1 Aluminum alloy 7075-T6 aircraft wing panel (a) showing unusual surface appearance. (b) SEM of the panel surface showing cracked anodized coating. 160x. (c) SEM showing the anodized coating flaking away and corrosion deposit under the coating. 85x. (d) Cross section of corrosion site More
Image
Published: 01 June 2019
Fig. 1 Cracked aluminum alloy 7075-T6 aircraft pylon strut (a) with arrows indicating cracks. (b) SEM of crack C from (a) showing the mud crack pattern indicative of a corrosion mechanism. 820x More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091674
EISBN: 978-1-62708-217-4
... hinge brackets in service for cracks and for proper maintenance of paint. Also suggested was replacing the aluminum alloy 2015-T6 with alloy 7075-T6, and surface treatment for the 7075-T6 brackets was recommended using sulfuric acid anodizing and dichromate sealing. Finally, it was also recommended...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0047199
EISBN: 978-1-62708-234-1
... Abstract The lower receiver of the M16 rifle is an anodized forging of aluminum alloy 7075-T6. Degradation of the receivers was observed after three years of service in a hot, humid atmosphere. The affected areas were those in frequent contact with the user's hands. There was no question...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006413
EISBN: 978-1-62708-217-4
... Abstract Examination of a 7075-T6 aluminum alloy pylon strut revealed cracks in two locations on the ears of the strut. Because the part was still intact, the cracks had to be forced open so that the fractures could be examined. Scanning electron microscopy (SEM) of the opened cracks showed...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001366
EISBN: 978-1-62708-215-0
... Abstract An AMS 4126 (7075-T6) aluminum alloy impeller from a radial inflow turbine fractured during commissioning. Initial examination showed that two adjacent vanes had fractured through airfoils in the vicinity of the vane leading edges, and one vane fractured through an airfoil near the hub...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... observation was that the failure of the bolt was located in the vicinity of a 7075-T6 aluminum alloy flange which corroded — evidenced by white, chalky corrosion products. Rust spots (pits) were observed along the shank about 1 2 in. from the head. At this point, the bolt emerges from the flange...