1-19 of 19 Search Results for

6150

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047813
EISBN: 978-1-62708-229-7
... Abstract After being in service for ten years the ball-and-race coal pulverizer was investigated after noises were noted in it. Its lower grinding ring was attached to the 6150 normalized steel outer main shaft while the upper grinding ring was suspended by springs from a spider attached...
Image
Published: 01 January 2002
Fig. 11 6150 steel coal pulverizer shaft that failed by fatigue. (Left) Section through pulverizer showing the inner main shaft that fractured, repaired itself by friction welding, and fractured a second time. (Right) Photograph of the friction welded surface More
Image
Published: 01 January 2002
Fig. 21 Landing-gear spring, 6150 steel, that broke during a hard landing. (a) Configuration and dimensions (given in inches) of the spring. (b) Fractograph showing fatigue crack that initiated the brittle fracture. 7× More
Image
Published: 30 August 2021
Fig. 35 Landing-gear spring, 6150 steel, that broke during a hard landing. (a) Configuration and dimensions (given in inches) of the spring. (b) Fractograph showing fatigue crack that initiated the brittle fracture; magnification, 7× More
Image
Published: 01 June 2019
Fig. 1 Landing-gear spring, 6150 steel, that broke during a hard landing. (a) Configuration and dimensions (given in inches) of the spring. (b) Fractograph showing fatigue crack that initiated the brittle fracture. 7× More
Image
Published: 01 June 2019
Fig. 1 6150 steel coal pulverizer shaft that failed by fatigue. (Left) Section through pulverizer showing the inner main shaft that fractured, repaired itself by friction welding, and fractured a second time. (Right) Photograph of the friction welded surface More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048156
EISBN: 978-1-62708-235-8
... Abstract A 6150 flat spring was found to be failed. The face of the spring was revealed to be under tensile stress. The failure was concluded to have begun at the dark spot on the edge where roughness resulted from shearing during the blanking operation. Blanking Roghness Tensile stress...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048117
EISBN: 978-1-62708-235-8
... Abstract Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048164
EISBN: 978-1-62708-217-4
... Abstract A flat spring for the main landing gear of a light aircraft failed after safe execution of a hard landing. The spring material was identified by chemical analysis to be 6150 steel. The fracture was found to have occurred near the end of the spring that was inserted through a support...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048665
EISBN: 978-1-62708-217-4
... on the inside surface. The top of the jackscrew was 6150 steel. Both ends of the pins were revealed to be dented where the jackscrew had pressed into them and were observed to have been resulted due to overdriving the jackscrew at the end of an unkneeling cycle. These dented areas were found to be heavily...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001018
EISBN: 978-1-62708-217-4
... Abstract Initial investigation showed that a landing gear failure was the result of a hard landing with no evidence of contributory factors. The objective of reexamination was to determine whether there was any evidence of metallurgical failure. The landing gear was primarily an AISI type 6150...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001902
EISBN: 978-1-62708-217-4
... SAE 6150 spring steel, Canada's cold weather which may have had an embrittling effect on the steel, and cumulative fatigue damage from severe landing loads during service life. Replacement with heavier-duty spring legs will probably not eliminate this type of failure, but their use has reduced...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001730
EISBN: 978-1-62708-229-7
... (power) Torsional fatigue 6150 UNS G61500 Fatigue fracture A unique failure developed in the central shaft of a coal pulverizer at our plant. A crack appeared in the shaft at one place and then welded by friction around the circumference while the pulverizer continued to operate. Then another...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001813
EISBN: 978-1-62708-180-1
... are generally caused by operation of springs at stresses that are higher than expected. It must be kept in mind, however, that the stresses a given spring can withstand are greatly affected by the operating environment. For example, helical springs made of 6150 steel provided failure-free service in fuel...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
... that are higher than expected. Note that the stresses a given spring can withstand are greatly affected by the operating environment. For example, helical springs made of 6150 steel provided failure-free service in fuel-injection pumps when the fuel oil being pumped was a normal low-sulfur grade. However, several...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001808
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001812
EISBN: 978-1-62708-180-1
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... testing and were submitted for laboratory analysis. The springs were from a current production lot and had been made from air-melted 6150 pretempered steel wire. The springs were 50 mm (2 in.) in outside diameter and 64 mm (2.5 in.) in free length, had five coils and squared-and-ground ends, and were made...
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006805
EISBN: 978-1-62708-329-4