Skip Nav Destination
Close Modal
Search Results for
4340 (low-alloy steel)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 50 Search Results for
4340 (low-alloy steel)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001794
EISBN: 978-1-62708-241-9
... low-alloy steel insufficient fillet radius fractography hardness 4340 (low-alloy steel) UNS G43400 Background According to the information provided at the beginning of our investigation, the submitted specimen is the drive shaft in the propulsion system of a boat that operated...
Abstract
The drive shaft in a marine propulsion system broke, stranding a large vessel along the Canadian seacoast. The shaft was made from quenched and tempered low-alloy steel. Fractographic investigation revealed that the shaft failed under low rotating-bending variable stress. Fatigue propagation occurred on about 95% of the total cross section of the shaft, under both low-cycle and high-cycle fatigue mechanisms. It was found that the fillet radius at the fracture’s origin was smaller than the one provisioned by design. As a result, the stresses at this location exceeded the values used in the design calculations, thus causing the initiation of the cracking. Moreover, although the shaft had been quenched and tempered, its actual hardness did not have the optimal value for long-term fatigue strength.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046870
EISBN: 978-1-62708-217-4
..., AMS 6415 steel. Hardness measurements were within the range required for this part. The microstructure was free from any abnormalities or defects. Visual and low-magnification (15 to 30 x) examination of the fracture surfaces showed that the failure had originated at several corrosion pits...
Abstract
A hollow, splined alloy steel aircraft shaft (machined from an AMS 6415 steel forging – approximately the same composition as 4340 steel – then quenched and tempered to a hardness of 44.5 to 49 HRC) cracked in service after more than 10,000 h of flight time. The inner surface of the hollow shaft was exposed to hydraulic oil at temperatures of 0 to 80 deg C (30 to 180 deg F). Analysis (visual inspection, 15-30x low magnification examination, 4x light fractograph, chemical analysis, hardness testing) supported the conclusions that the shaft cracked in a region subjected to severe static radial, cyclic torsional, and cyclic bending loads. Cracking originated at corrosion pits on the smoothly finished surface and propagated as multiple small corrosion-fatigue cracks from separate nuclei. The originally noncorrosive environment (hydraulic oil) became corrosive in service because of the introduction of water into the oil. Recommendations included taking additional precautions in operation and maintenance to prevent the use of oil containing any water through filling spouts or air vents. Also, polishing to remove pitting corrosion (but staying within specified dimensional tolerances) was recommended as a standard maintenance procedure for shafts with long service lives.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049797
EISBN: 978-1-62708-235-8
...Abstract Abstract An AISI 4340 threaded steel connecting rod that was part of a connecting linkage used between a parachute and an instrumented drop test assembly fractured under high dynamic loading when the assembly was dropped from an airplane. A large flaw that originated from the root...
Abstract
An AISI 4340 threaded steel connecting rod that was part of a connecting linkage used between a parachute and an instrumented drop test assembly fractured under high dynamic loading when the assembly was dropped from an airplane. A large flaw that originated from the root of a machined thread groove was visible on the fracture surface. Heavy oxidation at elevated temperatures was indicated as most of the surface of the flaw was black. Fine secondary cracks aligned transverse to the growth direction was revealed by scanning electron microscopy. It was established that intergranular cracking observed in this alloy was caused during heat treating as the thread root served as an effective stress concentration and induced quench cracking. It was found that fracture in the overload region occurred by a ductile void growth and coalescence process. Premature failure of the threaded rod was thus attributed to the presence of the quench crack flaw caused by an improper machining sequence and heat treatment practice.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001299
EISBN: 978-1-62708-215-0
...Abstract Abstract A 4340 steel piston engine crankshaft in a transport aircraft failed catastrophically during flight. The fracture occurred in the pin radius zone. Fractographic studies established the mode of failure as fatigue under a complex combination of bending and torsional stresses...
Abstract
A 4340 steel piston engine crankshaft in a transport aircraft failed catastrophically during flight. The fracture occurred in the pin radius zone. Fractographic studies established the mode of failure as fatigue under a complex combination of bending and torsional stresses. SEM examination revealed that the fracture origin was a subsurface defect-a hard refractory (Al2O3) inclusion—in the zone close to the pin radius. Chemical analysis showed the crankshaft material to be of inferior quality. It was recommended that magnetic particle inspection using the dc method be used to cheek for cracks during periodic maintenance overhauls.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001619
EISBN: 978-1-62708-225-9
.../S0167-8442(00)00050-1 10. Li C.X. , Sun Y. , and Bell T. : “Factors Influencing Fretting Fatigue Properties of Plasma-Nitrided Low Alloy Steel,” Mater. Sci. Eng. A , 2000 , 292 , pp. 18 – 25 . 10.1016/S0921-5093(00)01017-0 Selected References Selected References...
Abstract
A splined shaft on a wood chip-to-fiber refiner failed during equipment start-up. The shaft broke into two pieces at a location close to the end of the splined part of the shaft. The failed component showed the classical fatigue-cracking fracture face. The shaft had a diam of approximately 140 mm (5.5 in.) in the unsplined section and was made of 4340 Ni-Cr-Mo alloy steel heat treated to a uniform hardness of HRC 31. Cracks from at least seven different origins had coalesced to produce the single large crack that resulted in failure. The origins of these cracks were on the flanks of the splines. SEM examination revealed the splined shaft failed by fretting fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001620
EISBN: 978-1-62708-229-7
... Fretting Fatigue Properties of Plasma-Nitrided Low Alloy Steel,” Mater. Sci. Eng. A , 2000 , 292 , pp. 18 – 25 . 10.1016/S0921-5093(00)01017-0 Selected References Selected References • Wulpi D.J. , Failures of Shafts , Failure Analysis and Prevention , Vol 11 , ASM Handbook...
Abstract
Two vertical coal-pulverizer shafts at a coal-fired generation station failed after four to five years in service. One shaft was completely broken, and the other was unbroken but cracked at both ends. shaft material was AISI type 4340 Ni-Cr- Mo alloy steel, with a uniform hardness of approximately HRC 27. Metallographic examination of transverse sections through the surface-damaged areas adjacent to the cracks also showed additional small cracks growing at an angle of approximately 60 deg to the surface. The crack propagation mode appeared to be wholly transgranular. SEM examination revealed finely spaced striations on the crack surfaces, supporting a diagnosis of fatigue cracking. Crack initiation in the pulverizer shafts started as a result of fretting fatigue. Greater attention to lubrication was suggested, combined with asking the manufacturer to consider nitriding the splined shaft. It was suggested that the surfaces be securely clamped together and that an in-service maintenance program be initiated to ensure that the tightness of the clamping bolts was verified regularly.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001780
EISBN: 978-1-62708-241-9
... analyst will still encounter such failures when proper design considerations are not made. The general deleterious effect of inclusions on fatigue resistance is shown in Fig. 9 for AISI 4340H low alloy steel [ 14 ]. The type of inclusions were described as spherical and were, therefore, most likely...
Abstract
A number of failures involving carbon and alloy steels were analyzed to assess the effects of inclusions and their influence on mechanical properties. Inclusions, including brittle oxides and more ductile manganese sulfides (MnS), affect fatigue endurance limit, fatigue crack propagation rates, fracture toughness, notch toughness, and transverse tensile properties, and do so in an anisotropic manner with respect to rolling direction. Significant property anisotropy has been documented in the failures investigated, providing evidence that designers failed to account for it. Typical fracture morphologies observed in such cases and metallographic appearances of MnS-containing materials are illustrated.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
..., the endurance limit of the AISI 4340 steel was reduced from 760 MPa (110 ksi) for specimens made from low-stress grinding to 520 MPa (75 ksi) for specimens made from abusive-stress grinding. Hardened surfaces of high-carbon alloy steels containing patches of retained austenite that transform to martensite...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001792
EISBN: 978-1-62708-241-9
... fracture rotary-bending fatigue steel ratchet marks beach marks star-shaped fracture pattern SEM/EDX analysis fatigue strength SAE 4340 (nickel-chromium-molybdenum alloy steel) UNS G43400 SAE 5046H (low-alloy chromium steel) UNS H50460 Introduction The primary objective...
Abstract
Two shafts that transmit power from the engine to the propeller of a container ship failed after a short time in service. The shafts usually have a 25 year lifetime, but the two in question failed after only a few years. One of the shafts, which carries power from a gearbox to the propeller, is made of low alloy steel. The other shaft, part of a clutch mechanism that regulates the transmission of power from the engine to the gears, is made of carbon steel. Fracture surface examination of the gear shaft revealed circumferential ratchet marks with the presence of inward progressive beach marks, suggesting rotary-bending fatigue. The fracture surfaces on the clutch shaft exhibited a star-shaped pattern, suggesting that the failure was due to torsional overload which may have initiated at corrosion pits discovered during the examination. Based on the observations, it was concluded that rotational bending stresses caused the gear shaft to fail due to insufficient fatigue strength. This led to the torsional failure of the corroded clutch shaft, which was subjected to a sudden, high level load when the shaft connecting the gearbox to the propeller failed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001706
EISBN: 978-1-62708-217-4
... of the metallurgical characteristics, and low damage tolerance of the 4340, it is concluded that catastrophic failure of the truck beam on the ground has been caused by stress corrosion cracking. Conclusions The left-hand main landing gear (MLG) truck beam was manufactured from 4340 steel as specified...
Abstract
The truck beam of the left main landing gear (MGL) of a Boeing 707 airplane collapsed on the ground just after the aircraft was unloaded and refueled. The investigation revealed that failure was caused by the propagation of an intergranular crack originating from the bottom of the pit. The crack reached the critical size and caused failure by stress-corrosion cracking (SCC) under static loading conditions in service. The failed beam was protected by a well adhering paint system. However, the presence of adequate amounts of corrosion preventive compound films (CPC) on the surfaces of the failed beam could not be conclusively established because of the long term service exposure and presence of lubricants.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001752
EISBN: 978-1-62708-241-9
...Abstract Abstract Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide...
Abstract
Results of failure analyses of two aircraft crankshafts are described. These crankshafts were forged from AMS 6414 (similar composition to AISI 4340) vacuum arc remelted steels with sulfur contents of 0.003% (low sulfur) and 0.0005% (ultra-low sulfur). A grain boundary sulfide precipitate was caused by overheat of the low sulfur steel, and an incipient melting of grain boundary junctions was caused by overheat of the ultra-low sulfur steel. The precipitates and incipient melting in these two failed crankshafts were observed during the examination. As expected, impact fractures from the low sulfur steel crankshaft contained planar dimpled facets along separated grain boundaries with a small spherical manganese sulfide precipitates within each dimple. In contrast, planar dimpled facets along separated grain boundaries of impact fractures from the ultra-low sulfur crankshaft steel contained a majority of small spherical particles consisting of nitrogen, boron, iron, carbon, and a small amount of oxygen. Some other dimples contained manganese sulfide precipitates. Fatigue samples machined from the ultra-low sulfur steel crankshaft failed internally at planar grain boundary facets. Some of the facets were covered with nitrogen, boron, iron, and carbon film, while other facets were relatively free of such coverage. Results of experimental forging studies defined the times and temperatures required to produce incipient melting overheat and facets at grain boundary junctions of ultra-low sulfur AMS 6414 steels.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001380
EISBN: 978-1-62708-215-0
... final catastrophic failure has occurred. The stresses required to cause SCC are often times quite minimal, especially in high strength steels which have a considerably low value of K ISCC . Conclusion and Recommendations The failure of the pitch horn belt was attributed to SCC based upon...
Abstract
One of the two AISI 4340 steel pitch horn bolts from the main rotor hub assembly failed while in service. Optical microscope revealed evidence of corrosion pitting in regions adjacent to the fracture. Fractographic examination utilizing a scanning electron microscope revealed multiple crack origins which assumed a “thumbnail” shape and displayed surface morphologies which resulted from intergranular decohesion. Many of the crack sites initiated from corrosion pits. Energy dispersive spectroscope performed on areas within the crack initiation site showed the presence of chlorides. The failure was attributed to stress-corrosion cracking. Short- and long-term recommendations to prevent future failures are given.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001145
EISBN: 978-1-62708-217-4
... in the manufactured part. Microhardness measurements vary from as low as 350 KHN (35 HRC) in the dark areas to as high as 690 KHN (58 HRC) in the light areas. Fig. 19 Overheating of the Steel Caused by Escaping Gases. Discussion Corrosion is the primary cause of breech chamber failures. The problem...
Abstract
Cartridge-pneumatic starter systems are used on military aircraft. In the cartridge mode used for alert starts, the starter turbine is driven by hot gases produced through the controlled burning of a solid propellant cartridge within a closed chamber (the breech chamber/cartridge chamber assembly). Premature failures of steel breech chambers have been prevalent enough to cause serious concern. The breech chamber is fabricated from a 4340 Ni-Cr-Mo steel forging heat treated to a hardness in the range HRC 40 to 45. The failures have taken several forms, including fracture and unzipping of the chamber dome, burn-through of the dome, and shearing of bayonet locking lugs. Factors identified as significant in the failures are the pressure developed in the chamber and internal corrosion of the chamber in an environment that can produce stress-corrosion cracking. The interior configuration of the chamber and the stress distribution also have a bearing upon the failure modes. Several failures are reviewed to illustrate the problems.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003540
EISBN: 978-1-62708-180-1
... strongly on the grain boundary surface. It can also appear in the stress-relief cracking of chromium-molybdenum steels ( Ref 5 ). Fig. 3 SEM image of fracture surface of nickel-base alloy (Inconel 751, annealed and aged) after stress rupture (730 °C, or 1350 °F; 380 MPa, or 55 ksi; 125 h). (a) Low...
Abstract
This article briefly reviews the various metallurgical or environmental factors that cause a weakening of the grain boundaries and, in turn, influence the occurrence of intergranular (IG) fractures. It discusses the mechanisms of IG fractures, including the dimpled IG fracture, the IG brittle fracture, and the IG fatigue fracture. The article describes some typical embrittlement mechanisms that cause the IG fracture of steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006777
EISBN: 978-1-62708-295-2
.... It can also appear in the stress-relief cracking of chromium-molybdenum steels ( Ref 5 ). Fig. 3 Scanning electron microscopy image of fracture surface of nickel-base alloy (Inconel 751, annealed and aged) after stress rupture (730 °C, or 1350 °F; 380 MPa, or 55 ksi; 125 h). (a) Low-magnification...
Abstract
This article briefly reviews the factors that influence the occurrence of intergranular (IG) fractures. Because the appearance of IG fractures is often very similar, the principal focus is placed on the various metallurgical or environmental factors that cause grain boundaries to become the preferred path of crack growth. The article describes in more detail some typical mechanisms that cause IG fracture. It discusses the causes and effects of IG brittle cracking, dimpled IG fracture, IG fatigue, hydrogen embrittlement, and IG stress-corrosion cracking. The article presents a case history on IG fracture of steam generator tubes, where a lowering of the operating temperature was proposed to reduce failures.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001495
EISBN: 978-1-62708-221-1
... alloy steel and thus met material specification. The failure was a result of torsional fatigue in the tensile plane, originating from one of several gouges around the splined radius of the shaft. The fatigue crack progressed for a large number of cycles before final fracture. The shaft met metallurgical...
Abstract
An axle shaft in an open-pit mining truck hauling overburden failed after operating for 27,000 h. Previous failures had resulted from longitudinal shear, but this had not, bringing material quality into question. Chemical analysis verified that the part was SAE4340 Ni-Cr-Mo alloy steel and thus met material specification. The failure was a result of torsional fatigue in the tensile plane, originating from one of several gouges around the splined radius of the shaft. The fatigue crack progressed for a large number of cycles before final fracture. The shaft met metallurgical requirements and should have withstood normal operating conditions. The spacing of the gouge marks coincided with the spacing of the splines, indicative of careless assembly with the mating wheel gear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001504
EISBN: 978-1-62708-217-4
.... For example, following the catastrophic failure described earlier, the very high strength H11 steel is no longer used by the CF because of its low fracture toughness. Another example is the poor SCC resistance of some Al alloys such as 7079-T6 and 7075-T6 that are common in most CF aircraft. SCC is still...
Abstract
Despite extensive aircraft landing gear design analyses and tests performed by designers and manufacturers, and the large number of trouble-free landings, aircraft users have experienced problems with and failures of landing gear components. Different data banks and over 200 failure analysis reports were surveyed to provide an overview of structural landing gear component failures as experienced by the Canadian Forces over the last 20 years on more than 20 aircraft types, and to assess trends in failure mechanisms and causes. Case histories were selected to illustrate typical problems, troublesome failure mechanisms, the role of high strength aluminum alloys and steels, and situations where fracture mechanics analyses provided insight into the failures. The two main failure mechanisms were: fatigue occurring mainly in steel components, and corrosion related problems with aluminum alloys. Very few overload failures were noted. A number of causes were identified: design deficiencies and manufacturing defects leading mainly to fatigue failures, and poor materials selection and improper maintenance as the principal causes of corrosion-related failures. The survey showed that a proper understanding of the failure mechanisms and causes, by thorough failure analysis, provides valuable feedback information to designers, operators and maintenance personnel for appropriate corrective actions to be taken.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003544
EISBN: 978-1-62708-180-1
... ), and part diameter ( K d ) for fatigue life of steel parts. See text. Finite-Life Criterion (ε-<italic>N</italic> Curves) Strain life is the general approach employed for continuum response in the safe-life, finite-life regime. It is primarily intended to address the low-cycle fatigue area (e.g...
Abstract
This article describes three design-life methods or philosophies of fatigue, namely, infinite-life, finite-life, and damage tolerant. It outlines the three stages in the process of fatigue fracture: the initial fatigue damage leading to crack initiation, progressive cyclic growth of crack, and the sudden fracture of the remaining cross section. The article discusses the effects of loading and stress distribution on fatigue cracks, and reviews the fatigue behavior of materials when subjected to different loading conditions such as bending and loading. The article examines the effects of load frequency and temperature, material condition, and manufacturing practices on fatigue strength. It provides information on subsurface discontinuities, including gas porosity, inclusions, and internal bursts as well as on corrosion fatigue testing to measure rates of fatigue-crack propagation in different environments. The article concludes with a discussion on rolling-contact fatigue, macropitting, micropitting, and subcase fatigue.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003566
EISBN: 978-1-62708-180-1
... a variety of steels and followed their performance over a period of time. The steels tested included plain carbon and low-alloy steels, and the hardness of each hammer complied with the hardness limits required by BS 876 (520 to 640 HV; 50.5 to 57.5 HRC). Although this type of testing yields useful...
Abstract
This article briefly reviews the analysis methods for spalling of striking tools with emphasis on field tests conducted by A.H. Burn and on the laboratory tests of H.O. McIntire and G.K. Manning and of J.W. Lodge. It focuses on the metallography and fractography of spalling. The macrostructure and microstructure of spall cavities are described, along with some aspects of the numerous specifications for striking/struck tools. The article also describes the availability of spall-resistant metals and the safety aspects of striking/struck tools in railway applications.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006816
EISBN: 978-1-62708-329-4
...-type shock-resistant steel, although sometimes a less expensive material can be substituted for the material specified. For example, the same hardness can be achieved in a drastically quenched plain carbon steel, tempered at a low temperature, as in a higher-carbon alloy steel that was tempered...
Abstract
This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.