Skip Nav Destination
Close Modal
Search Results for
4130
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 47 Search Results for
4130
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047161
EISBN: 978-1-62708-235-8
... Abstract Routine magnetic-particle inspection revealed crack indications in a number of shafts produced from hot-rolled 4130 steel bar. A pronounced indication of this size is cause for rejection if the defect is not eliminated during subsequent machining. A microstructural analysis...
Abstract
Routine magnetic-particle inspection revealed crack indications in a number of shafts produced from hot-rolled 4130 steel bar. A pronounced indication of this size is cause for rejection if the defect is not eliminated during subsequent machining. A microstructural analysis of the shaft cross section revealed that the crack was approximately 0.5 mm (0.020 in.) deep and oriented in a radial direction. Furthermore, no stringer-type nonmetallic inclusions were observed in the vicinity of the flaw, which did not display the intergranular characteristics of a quench crack. The defect did, however, contain substantial amounts of oxide, which evidently resulted from the hot-working operation. This evidence supports the conclusion that the appearance of this discontinuity, with the long axis parallel to the working direction and radial orientation with regard to depth, strongly suggests a seam produced during rolling. Use of components with surface-defect indications as small as 0.5 mm (0.02 in.) can be risky in certain circumstances. Depending on the orientation of the flaw with respect to applied loads, the nature of the applied forces (for example, cyclic), and the operating environment, such a surface flaw can become the initiating site for a fatigue crack or a corrosion-related failure.
Image
Published: 01 January 2002
Fig. 11 S-N curve for notched ( K t = 2.0) 4130 alloy steel sheet. Stresses are based on net section. Source: Ref 31
More
Image
Published: 01 January 2002
Fig. 26 Seam in rolled 4130 steel bar (a) Closeup of seam. Note the linear characteristics of this flaw. (b) Micrograph showing cross section of the bar. Seam is normal to the surface and filled with oxide. 30×
More
Image
Published: 01 January 2002
Fig. 30 Permanent mold of 4130 steel for centrifugal casting of gray- and ductile-iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which
More
Image
in Steel Hardenability and Failure Analysis
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 The distance hardness is depicted for Grade 4130 steel at maximum, midrange, and minimum composition levels. This comparison is for Grain Size 7 only.
More
Image
in Surface Indications in Hot-Rolled 4130 Steel Bars
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Seam in rolled 4130 steel bar. (a) Overall view of bar showing location of seam (arrow). (b) Closeup of seam. Note the linear characteristics of this flaw. (c) Micrograph showing cross section of the bar. Seam is normal to the surface and filled with oxide. 30x
More
Image
Published: 30 August 2021
Fig. 10 Permanent mold of 4130 steel for centrifugal casting of gray and ductile iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which
More
Image
in Failures Related to Hot Forming Processes
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 9 Seam in rolled 4130 steel bar. (a) Closeup of seam. Note the linear characteristics of this flaw. (b) Micrograph showing cross section of the bar. Seam is normal to the surface and filled with oxide. Original magnification: 30×
More
Image
in Problems Associated with Heat Treated Parts
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 7 The effect of heating rate on the Ac 3 critical temperature for 4130 steel. Q&T, quenched and tempered. Source Ref 5
More
Image
in Failure of a Mold for Centrifugal Casting of Gray- and Ductile-Iron Pipe
> ASM Failure Analysis Case Histories: Steelmaking and Thermal Processing Equipment
Published: 01 June 2019
Fig. 1 Permanent mold of 4130 steel for centrifugal casting of gray- and ductile-iron pipe that failed because of localized overheating. The failure was caused by splashing of molten metal at the spigot end. Subsequent overheating resulted in mold-wall spalling and scoring, details of which
More
Image
in Metallurgical Examinations of a Fragmented Blank Firing Adapter and Associated Components from an M-16 Rifle
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 5 Post test condition of a BFA fabricated from AISI 4130 steel after an intentional ballistics test.
More
Image
in Metallurgical Examinations of a Fragmented Blank Firing Adapter and Associated Components from an M-16 Rifle
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 7 Microstructure of AISI 4130 steel. This microstructure is representative of the intentionally tested BFA shown in Figure 5 .
More
Image
in Fatigue Fracture of a Rebuilt Exciter Shaft That Was Accelerated by Weld-Deposit Cracks
> ASM Failure Analysis Case Histories: Improper Maintenance, Repair, and Operating Conditions
Published: 01 June 2019
Fig. 1 Resurfaced AISI 4130 steel exciter shaft that failed by fatigue accelerated by weld-deposit cracks. (a) Section through shaft at fracture site. Original keyway is at left, recut keyway at top. Arrow A indicates resurfacing weld deposit; arrow B, HAZ. Etched with nital. 2×. (b) Section
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0089617
EISBN: 978-1-62708-232-7
... Abstract A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten...
Abstract
A forged 4130 steel cylindrical permanent mold, used for centrifugal casting of gray- and ductile-iron pipe, was examined after pulling of the pipe became increasingly difficult. In operation, the mold rotated at a predetermined speed in a centrifugal casting machine while the molten metal, flowing through a trough, was poured into the mold beginning at the bell end and ending with the spigot end being poured last. After the pipe had cooled, it was pulled out from the bell end of the mold, and the procedure was repeated. Investigation supported the conclusion that failure of the mold surface was the result of localized overheating caused by splashing of molten metal on the bore surface near the spigot end. In addition, the mold-wash compound (a bentonite mixture) near the spigot end was too thin to provide the proper degree of insulation and to prevent molten metal from sticking to the bore surface. Recommendations included reducing the pouring temperatures of the molten metal and spraying a thicker insulating coating onto the mold surface.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091674
EISBN: 978-1-62708-217-4
... Abstract Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported...
Abstract
Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported the conclusion that the failure of the hinge brackets occurred by SCC. The corrosion was caused by exposure to a marine environment in the absence of paint in stressed areas due to chipping. The stress resulted from the interference fit of the bushing in the lug hole. Recommendations included inspecting all hinge brackets in service for cracks and for proper maintenance of paint. Also suggested was replacing the aluminum alloy 2015-T6 with alloy 7075-T6, and surface treatment for the 7075-T6 brackets was recommended using sulfuric acid anodizing and dichromate sealing. Finally, it was also recommended that the interference fit of the bushing in the lug hole be discontinued.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001903
EISBN: 978-1-62708-217-4
... in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed...
Abstract
Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed features typical of low stress intensity fatigue of aluminum alloys. The fatigue resulted from abnormal fretting owing to inadequate torquing of the main retention bolts. Aircraft maintenance engineers and owners were advised to adhere to specifications when torquing this joint.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001601
EISBN: 978-1-62708-235-8
... of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes. Expert system Inclusions Metal...
Abstract
Flow forming technology has emerged as a promising, economical metal forming technology due to its ability to provide high strength, high precision, thin walled tubes with excellent surface finish. This paper presents experimental observations of defects developed during flow forming of high strength SAE 4130 steel tubes. The major defects observed are fish scaling, premature burst, diametral growth, microcracks, and macrocracks. This paper analyzes the defects and arrives at the causative factors contributing to the various failure modes.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0089766
EISBN: 978-1-62708-224-2
... quenched and tempered to a hardness of 241 to 285 HRB. Preheating to 370 deg C (700 deg F) before and during welding with AISI 4130 steel wire was specified. It was also recommended that the weld be subjected to magnetic-particle inspection and then stress relieved at 595 deg C (1100 deg F), followed...
Abstract
Two tubular AISI 1025 steel posts (improved design) in a carrier vehicle failed by cracking at the radius of the flange after five weeks of service. The posts were two of four that supported the chassis of the vehicle high above the wheels. The original design involved a flat flange of low-carbon low-alloy steel that was welded to an AISI 1025 steel tube, and the improved design included placing the welded joint of the flange farther away from the flange fillet. Investigation (visual inspection and chemical analysis) supported the conclusion that the failures in the flanges of improved design were attributed to fatigue cracks initiating at the aluminum oxide inclusions in the flange fillet. Recommendations included retaining the improved design of the flange with the weld approximately 50 mm (2 in.) from the fillet, but changing the metal to a forging of AISI 4140 steel, oil quenched and tempered to a hardness of 241 to 285 HRB. Preheating to 370 deg C (700 deg F) before and during welding with AISI 4130 steel wire was specified. It was also recommended that the weld be subjected to magnetic-particle inspection and then stress relieved at 595 deg C (1100 deg F), followed by final machining.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001663
EISBN: 978-1-62708-236-5
... used. Our investigation supports the supposition that a live round of ammunition was inadvertently fired. Adapters Automatic weapons Explosions Rifles 4130 UNS G41300 440C UNS S44020 (Other, general, or unspecified) fracture Training exercises are essential at many laboratories...
Abstract
Personnel responsible for laboratory protection at some plants are required to participate in exercises simulating a breach of security at the site. This document reports a metallurgical investigation of blank firing adapters (BFA), one of which exploded during such a training exercise. Determination of the cause of the explosion was the primary objective of the examination. Metallographic studies included the examination of BFAs fabricated from two different types of alloys that were tested for shock reaction. Optical microscopy supported by electron microscopy and analytical methods were used. Our investigation supports the supposition that a live round of ammunition was inadvertently fired.
Image
in An Investigation of the Development of Defects During Flow Forming of High Strength Thin Wall Steel Tubes
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 13 Relationship between diametrical growth and feed rate in reverse flow forming of SAE 4130 steel
More
1