1-20 of 94 Search Results for

410

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001094
EISBN: 978-1-62708-214-3
... Abstract Cadmium-coated type 410 martensitic stainless steel 1 4 -14 self-drilling tapping screws fractured during retorquing tests within a few weeks after installation. The screws were used to assemble structural steel frames for granite panels that formed the outer skin of a high...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0006899
EISBN: 978-1-62708-225-9
... Abstract Type 410 stainless steel bolts were used to hold together galvanized gray cast iron splice case halves. Before installation, the bolts were treated with molybdenum disulfide (MoS 2 ) antiseize compound. Several failures of splice case bolts were discovered in flooded manholes after...
Image
Published: 01 January 2002
Fig. 1 Pitted inside-diameter surface of AISI type 410 stainless steel tube. (a) Typical example of pitting. Approximately 2 1 2 ×. (b) Enlargement of pit shown in (a). Approximately 50× More
Image
Published: 01 January 2002
Fig. 6 Cracks in heat-affected zones (HAZs) of type 410 stainless steel beneath weld deposits of ER308 stainless steel. (a) Section through the HAZ that was not tempered after welding showing an intergranular stress-corrosion crack. The weld deposit is at upper right. Electrolytically etched More
Image
Published: 01 January 2002
Fig. 15 Cast type 410 stainless steel fuel-control lever that fractured at a cold shut. Dimensions in inches More
Image
Published: 01 December 1992
Fig. 1 Major portion of the fracture was brittle in the type 410 screws. Bright, lower left area was shear fracture from torsional overload during retorquing. More
Image
Published: 30 August 2021
Fig. 1 Pitted inside-diameter surface of AISI type 410 stainless steel tube. (a) Typical example of pitting. Original magnification: ~2.5×. (b) Enlargement of pit shown in (a). Original magnification: ~50× More
Image
Published: 30 August 2021
Fig. 26 Test samples of 410 stainless steel (19.05 mm diam × 50.80 mm length, or 0.75 in. diam × 2.00 in. length), hardened and oil quenched from 955 °C (1750 °F), tempered 1 h at temperature in air; all specimens from a single heat, 0.10% C, 12.50% Cr. (a) Effect of tempering temperature More
Image
Published: 15 January 2021
Fig. 37 (a) 410 stainless steel fastener with cracks that developed after heat treatment during stamping. Kalling’s etch. (b) The two sides of the crack match. Kalling’s etch More
Image
Published: 01 June 2019
Fig. 5 Hardness vs. tempering temperature, Alloy 410 tempered for 2 h 17 More
Image
Published: 01 June 2019
Fig. 1 Field failures of type 410 stainless steel bolts More
Image
Published: 01 June 2019
Fig. 2 Section of type 410 stainless steel bolt. The bolt failed after 3 months of service in a flooded manhole. 180× More
Image
Published: 01 June 2019
Fig. 3 Hydrogen-stress cracking of type 410 stainless steel bolts. (a) Quenched from 1010 to 65 °C (1850 to 150 °F) in oil, then tempered at 535 °C (1000 °F) for 1 h. Bolt exposed in 5% H 2 SO 4 solution and 1 m/L/L Rodine inhibitor as cathode with platinum anode. Applied current: 180 mA/2 More
Image
Published: 01 June 2019
Fig. 4 Section of type 410 stainless steel bolt. Quenched from 1010 °C (1850 °F), then tempered at 425 °C (800 °F) for 1 h. Bolt (cathode) broke under a torque of 70 N · m (600 in. · lb) after being hydrogen charged in 5% H 2 SO 4 solution. 185× More
Image
Published: 01 June 2019
Fig. 1 Cast type 410 stainless steel fuel-control lever that fractured at a cold shut. Dimensions in inches More
Image
Published: 01 June 2019
Fig. 1 Pitted inside-diameter surface of AISI type 410 stainless steel tube. (a) Typical example of pitting. Approximately 2 1 2 ×. (b) Enlargement of pit shown in (a). Approximately 50× More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045988
EISBN: 978-1-62708-235-8
... Abstract During installation, a clamp-strap assembly, specified to be type 410 stainless steel-austenitized at 955 to 1010 deg C (1750 to 1850 deg F), oil quenched, and tempered at 565 deg C (1050 deg F) for 2 h to achieve a hardness of 30 to 35 HRC, and used for securing the caging mechanism...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001013
EISBN: 978-1-62708-234-1
... by the corrosive, high velocity gas flow. The corrosion rate of either the inhibited or uninhibited gas stream was too high for equipment in high pressure gas service. Type 410 (12% Cr) stainless steel was recommended for the choke bodies because other equipment such as valves made of type 410 showed no evidence...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001086
EISBN: 978-1-62708-214-3
... in a highly sensitized state. The sensitized material lost corrosion resistance, became embrittled along the grain boundaries, and finally failed by intergranular cracking. Use of type 410 martensitic stainless steel was recommended. Embrittlement Heat-affected zone Sensitizing Vanes Welded joints...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001371
EISBN: 978-1-62708-215-0
... Abstract A type 410 stainless steel circulating water pump shaft used in a fossil power steam generation plant failed after more than 7 years of service. Visual examination showed the fracture surface to be coated with a thick, spalling, rust-colored scale, along with evidence of pitting...