1-14 of 14 Search Results for

347 (austenitic wrought stainless steel)

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001774
EISBN: 978-1-62708-241-9
... formation of polythionic acid in the process gas. ring type pipe joint fracture polythionic acid stainless steel transgranular fracture fractography creep strength 347 (austenitic wrought stainless steel) UNS S34700 321 (austenitic wrought stainless steel) UNS S32100...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001581
EISBN: 978-1-62708-235-8
... , Vol. 1 , Gunia R.B. , ed., American Society for Metals , Metals Park, OH , 1977 , p. 373 . 4. An Evaluation of the Yield, Tensile, Creep, and Rupture Strengths of Wrought 304, 316, 321, and 347 Stainless Steels at Elevated Temperatures , ASTM Data Series DS-5S2 , ASTM , Philadelphia...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003507
EISBN: 978-1-62708-180-1
... 1022 steel showing severe banding. Bands of pearlite (dark) and ferrite were caused by segregation of carbon and other elements during solidification and later decomposition of austenite. Nital. 250×. Courtesy of J.R. Kilpatrick Fig. 5 Type 430 stainless steel hot rolled to various...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... stressed in the short-transverse direction. In wrought austenitic stainless steels, crack paths are usually transgranular if proper heat treatment has been employed. However, if thermal processing has produced sensitization because of carbide precipitation, SCC frequently progresses intergranularly...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... even at high temperatures, due to sigma-phase formation, and become highly susceptible to foreign object damage (FOD) and domestic object damage (DOD). Fig. 6 Crack propagation through delta ferrite and sigma phases in type 347 stainless steel. Source: Ref 3 Certain austenitic...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003562
EISBN: 978-1-62708-180-1
... between partial and total slip ( Ref 47 ). The materials were copper, copper silicon, and austenitic stainless steel, all materials of low stacking fault energy; as a consequence, work hardening occurred at low frequencies, but softening set in at high frequencies because of the temperature rise. In...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... contact with chromium or stainless steels with only slight acceleration of corrosion; chromium and stainless steels are easily polarized cathodically in mild environments, so that the corrosion current is small despite the large differences in the open-circuit potentials between these metals and aluminum...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... with proper design with adequate corrosion allowance, a carbon steel vessel will provide many years of low-maintenance service. For more costly materials, such as austenitic stainless steels and copper and nickel alloys, a maximum corrosion rate of 0.1 mm/year (4 mils/year) is generally acceptable...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... Common metal-environment combinations associated with stress-corrosion cracking Alloy Environment Carbon steel Hot nitrate, hydroxide, and carbonate/bicarbonate solutions High-strength steels Aqueous electrolytes, particularly when containing H 2 S Austenitic stainless steels Hot...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
... carbon steel for alloy or stainless steel, or vice versa ( Ref 1 ). Table 1 Summary of statistics on pressure vessel failures compiled from 1981 through 1984 by the National Board of Boiler and Pressure Vessel Inspectors Initial part failure Causes Type of failures Numbers Low water cut...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003509
EISBN: 978-1-62708-180-1
... most dramatic and well-known example is the brittle failure of several World War II ships, which split in half while still at dockside ( Fig. 1 , Ref 2 ). The fractures originated at weld discontinuities and propagated through carbon-steel plate, which had coarse pearlite formed by furnace cooling...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
...-static, finite-life, and infinite-life regimes ( Fig. 3 ). Fig. 3 S - N curve for cruciform metal-active-gas-welded joints (structural steel S355, ASTM A572 grade 5). LCF, low-cycle fatigue; HCF, high-cycle fatigue; P F , probability of failure Failure in S - N testing is typically...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001810
EISBN: 978-1-62708-180-1
... require adequate lubrication for satisfactory operation. For bearings that operate in moderately corrosive environments, AISI type 440C stainless steel should be considered. Its maximum obtainable hardness is about 62 HRC, and it is recommended for use at temperatures below 175 °C (350 °F). However...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... 525 (b) 975 (b) 4 1Cr-Mo-Si; SA-213, grade T-11 565 (b) 1050 (b) 4 2Cr-1Mo-Si; SA-213, grade T-22 600 (b) 1110 (b) 4 7Cr-Mo 650 1200 5 9Cr-1Mo-V; SA-213, grade T-91 650 (a) 1200 (a) 4 9Cr-Mo 675 1245 5 Stainless steels 201, 202 845 1555 6...