Skip Nav Destination
Close Modal
Search Results for
317L
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-11 of 11
Search Results for 317L
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001069
EISBN: 978-1-62708-214-3
... Abstract A segment of a stainless steel clad bottom cone of an acid sulfite pulping batch digester failed from severe corrosion loss. The digester was fabricated of 19 mm ( 3 4 in.) low-carbon steel with 3.8 mm (0.15 in.) type 317L stainless steel cladding. The manufacturing method...
Abstract
A segment of a stainless steel clad bottom cone of an acid sulfite pulping batch digester failed from severe corrosion loss. The digester was fabricated of 19 mm ( 3 4 in.) low-carbon steel with 3.8 mm (0.15 in.) type 317L stainless steel cladding. The manufacturing method for the cladding was unknown. Visual and metallographic analyses indicated that the failure was from transgranular stress-corrosion cracking (TGSCC), which caused extensive cracking and spalling of the cladding and was localized in a segment of the bottom cone. The remainder of the digester cladding was unaffected. The TGSCC was attributed to high, locked-in residual stresses from the cladding process. It was recommended that the bottom cone replacement segment be stress relieved prior to installation.
Image
in Failure of a Type 317L Stainless Steel Clad Bottom Cone of an Acid Sulfite Pulping Batch Digester
> Handbook of Case Histories in Failure Analysis
Published: 01 December 1992
Fig. 1 Morphology of corrosion on the affected segment. Type 317L stainless steel cladding was absent in more than 50% of the area.
More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001097
EISBN: 978-1-62708-214-3
... loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended. Biomedical material 316L UNS S31603 Pitting corrosion Fatigue fracture Background Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant...
Abstract
Two type 316L stainless steel orthopedic screws broke approximately 6 weeks after surgical implant. The screws had been used to fasten a seven-hole narrow dynamic compression plate to a patient's spine. The broken screws and screws of the same vintage and source were examined using macrofractography, SEM fractography, and hardness testing. Fractography established that fracture was by fatigue and that the fatigue cracking originated at corrosion pits. Hardness while below specification, still indicated that the screws were in the cold-worked condition and notch sensitive during fatigue loading. Use of a steel with a higher molybdenum content (317L) in the annealed condition was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001654
EISBN: 978-1-62708-220-4
... that a molybdenum-bearing stainless steel such as 316L or 317L be used instead of 321. Heat exchanger tubes Leakage 321 UNS S32100 Pitting corrosion AISI type 321 stainless steel tubes - from both a heat exchanger, used to pre-heat make-up water, and from a blow-down unit in the same system - were...
Abstract
AISI type 321 stainless steel heat exchanger tubes failed after only three months of service. Macroscopic examination revealed that the leaks were the result of localized pitting attack originating at the water side surfaces of the tubes. Metallographic sections were prepared from both sets of tubes. Microscopic examination revealed that the pits had a small mouth with a large subsurface cavity which is typical of chloride pitting of austenitic stainless steel. However, no pitting was found in other areas of the system, where the chloride content of the process water was higher. This was attributed to the fact that they were downstream from a deaeration unit. It was concluded that the pitting was caused by a synergistic effect of chlorine and oxygen in the make-up water. Because it was not possible to install a deaeration unit upstream of the heat exchangers, it was recommended that a molybdenum-bearing stainless steel such as 316L or 317L be used instead of 321.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0091622
EISBN: 978-1-62708-230-3
... at the top end of the range. The plate was standard 317L material. The filler metal was type 316, although marginal in molybdenum content. Investigation (visual inspection, chemical analysis, micrographs, and metallographic examination) supported the conclusion that the damage to the neck liner was due to Cl...
Abstract
A CF-8M (cast type 316) neck liner or manway was removed from the top of a digester vessel. Repeated attempts to repair the part in the field during its life cycle of many years had failed to keep the unit from leaking. The casting was a CF-8M modified with the molybdenum level at the top end of the range. The plate was standard 317L material. The filler metal was type 316, although marginal in molybdenum content. Investigation (visual inspection, chemical analysis, micrographs, and metallographic examination) supported the conclusion that the damage to the neck liner was due to Cl-SCC in an area of debris buildup. It appeared the original casting suffered SCC in a low-oxygen area high in chlorides from repeated wet/dry cycles where there was a buildup of debris. Recommendations included redesigning the neck liner to eliminate the abrupt change where there was debris buildup. If redesign was impossible, an alloy more resistant to Cl-SCC, such as a duplex stainless steel or a high-molybdenum (4 to 6%) austenitic stainless steel, should be used.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001075
EISBN: 978-1-62708-214-3
...%) is designed to inhibit pitting corrosion. However, pitting did occur; thus, it was recommended that a higher-molybdenum austenitic stainless steel, type 317L (3 to 4% Mo), be used (although the lower limit of molybdenum content is identical to the upper limit of type 316L). It was also recommended...
Abstract
Several type 316L stainless steel wires in an electrostatic precipitator at a paper plant fractured in an unexpectedly short time. Failed wires were examined using optical and scanning electron microscope, and hardness tests were conducted. Fractography clearly established that fracture was caused by fatigue originating at corrosion pits on the surface of the wire. It was recommended that higher-molybdenum steel in the annealed condition be used to combat pitting corrosion.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.