1-20 of 116 Search Results for

316

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091617
EISBN: 978-1-62708-220-4
... Abstract A 680,000 kg (750 ton) per day ammonia unit was shut down following a fire near the outlet of the waste heat exchanger. The fire had resulted from leakage of ammonia from the type 316 stainless steel outlet piping. The outlet piping immediately downstream from the waste heat exchanger...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0060104
EISBN: 978-1-62708-220-4
... Abstract Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.med.c0048410
EISBN: 978-1-62708-226-6
... Abstract A narrow bone plate made of type 316 stainless steel and used to stabilize an open midshaft femur fracture failed. A crack at a plate hole next to the fracture site had been revealed by a radiograph taken 13 weeks after the operation. The plate was revealed to be slightly bent...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001650
EISBN: 978-1-62708-230-3
... Abstract Several air heat exchangers failed in service in a pulp and paper operation. The tubes were made from AISI 316 stainless steel with an extruded aluminum fin mechanically bonded to the outside. Originally, the failures were blamed on poor tube to header welds. The units were sent back...
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091631
EISBN: 978-1-62708-229-7
... Abstract A steam-condensate line (type 316 stainless steel tubing) began leaking after five to six years in service. The line carried steam condensate at 120 deg C (250 deg F) with a two hour heat-up/cool-down cycle. No chemical treatment had been given to either the condensate or the boiler...
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001059
EISBN: 978-1-62708-214-3
... 0.7 Fig. 1 Transgranular SCC in type 316 stainless steel. Note typical austenitic matrix with midgrain carbides. Oxalic etch. 128×. Abstract Field metallography and replication were performed on a type 316 stainless steel column in diglycol amine vacuum service to determine...
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001317
EISBN: 978-1-62708-215-0
..., Practice E Abstract Two AISI type 316 stainless steel dished ends failed through the formation of intergranular stress-corrosion cracks (IGSCC) within a few months of service. The dished ends failed in the straight portions near the circumferential welds that joined the ends to the cylindrical...
Image
Published: 01 June 2019
Fig. 1 Section through type 316 stainless steel tubing that failed by SCC because of exposure to chloride-contaminated steam condensate. Micrograph shows a small transgranular crack that originated at a corrosion pit on the inside surface of the tubing and only partly penetrated the tubing More
Image
Published: 01 June 2019
Fig. 1 AISI type 316 stainless steel piping that failed by SCC at welds. Cracking was caused by exposure to condensate containing chlorides leached from insulation. (a) View of piping assembly showing cracks on inner surface of cone. Dimensions given in inches. (b) Macrograph of an unetched More
Image
Published: 01 June 2019
Fig. 1 Pitting and stress corrosion in type 316 stainless steel evaporator tubes. (a) Rust-stained and pitted area near the top of the evaporator tube. Not clear in the photograph, but visually discernible, are myriads of fine, irregular cracks. (b) Same area shown in (a) but after dye More
Image
Published: 01 June 2019
Fig. 2 SCC initiated at the corrosion grooves in the type 316 stainless steel. Magnification 4× More
Image
Published: 01 June 2019
Fig. 3 Transgranular SCC in type 316 stainless steel. Magnification 100× More
Image
Published: 01 June 2019
Fig. 1 Branched transgranular cracks in AISI 316 stainless steel U bend (etched with water, HNO 3 and HCl, 50×). More
Image
Published: 01 June 2019
Fig. 1 Weld in AISI type 316 heat-exchanger shell that failed due to hot shortness. (a) Longitudinal section of weld; the dotted line indicated how the sample was sectioned for microexamination. Approximately 2 1 2 x. (b) Micrograph of section from weld. Hot shortness resulted More
Image
Published: 01 December 1992
Fig. 3 Type 316 stainless steel wick within the inconel 600 fin, showing corrosion effects at the leading edge. Locations A, B, and C, with viewing directions, are shown in Fig. 1 . (a) Location A: Leading edge of fin near through-wall crack that was parallel to this cross section. Corrosion More
Image
Published: 01 December 1992
Fig. 5 Corrosion of type 316 stainless steel wick and Inconel 600 at various locations within the fin. Locations A, B, and C are shown in Fig. 1 . (a) Location A: Severe intergranular corrosion and disintegration of the type 316 stainless steel screen near the leading edge of the fin. (b More
Image
Published: 01 December 1992
Fig. 7 Sectioned type 316 stainless steel test coupon. 130×. More
Image
Published: 01 December 1992
Fig. 1 Transgranular SCC in type 316 stainless steel. Note typical austenitic matrix with midgrain carbides. Oxalic etch. 128×. More
Image
Published: 01 December 1992
Fig. 2 Pitting on the outside surface of type 316 stainless steel tubes, propagating downward. More
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001060
EISBN: 978-1-62708-214-3
... in the weld HAZ. Note that the type 316 weld and the wrought stainless steel pipe section were unaffected by corrosion. 5×. Fig. 7 Intergranular corrosion at the external surface of the flange and IGSCC next to the flange fillet. 5×. Fig. 8 Intergranular corrosion at the external surface...