Skip Nav Destination
Close Modal
Search Results for
2024-T4
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13
Search Results for 2024-T4
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2002
Image
Published: 01 June 2019
Image
Published: 15 January 2021
Fig. 57 Liquid metal embrittlement in two aluminum alloy 2024-T4 plates that were wetted with liquid mercury and then loaded to fracture in tension. Fracture occurred rapidly at a stress well below the nominal yield strength of the plates. Visible on each fracture surface is a flat, mercury
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001546
EISBN: 978-1-62708-217-4
... material, and those that exhibited a dual failure. The last category failed in the adhesive bond and also showed a type of pitting on one face of the base material. In a third case, a 2024-T4 extrusion section was found to exhibit blistering after chemical milling. The presence of interconnecting...
Abstract
A longeron assembly constructed of Alclad 2024, some parts being in the T3 condition, others in the T42 condition, failed at a rivet hole. Plastic deformation at the crack site was found, but no plastic deformation was found in similar failed components. It was concluded that the numerous hairline cracks in the Alclad layer adjacent to the main fracture were fatigue cracks. In another case, bonded samples of 2024-T3 sheet were fatigue tested at various stress levels. Failures could be separated into three groups: those that failed in the adhesive bond, those that failed in the base material, and those that exhibited a dual failure. The last category failed in the adhesive bond and also showed a type of pitting on one face of the base material. In a third case, a 2024-T4 extrusion section was found to exhibit blistering after chemical milling. The presence of interconnecting microcracks between adjacent discontinuities supported a hydrogen blistering diagnosis.
Image
in Failures of Structures and Components by Metal-Induced Embrittlement
> Handbook of Case Histories in Failure Analysis
Published: 01 December 2019
Fig. 13 Plot showing the variation in the extent of sub-critical cracking for a 2024-T4 aluminium alloy plate with the amount of mercury available at the crack-initiation site. (Graph from [ 29 ], with modifications)
More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... of mean stress. Fig. 2 S-N curve for unnotched 2024-T4 aluminum alloy bar. Source: Ref 2 Variable-Amplitude Loading and Cumulative Damage While constant-amplitude loading is useful for defining fatigue properties and comparing test data, variable-amplitude loading, such as that shown...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001812
EISBN: 978-1-62708-241-9
... are not sufficiently high as to result in unstable fast fracture). Thus, greater volumes of mercury at the crack-initiation site and along crack paths can lead to more extensive cracking ( Fig. 13 ) [ 29 ]. Fig. 13 Plot showing the variation in the extent of sub-critical cracking for a 2024-T4 aluminium alloy...
Abstract
Several cases of embrittlement failure are analyzed, including liquid-metal embrittlement (LME) of an aluminum alloy pipe in a natural gas plant, solid metal-induced embrittlement (SMIE) of a brass valve in an aircraft engine oil cooler, LME of a cadmium-plated steel screw from a crashed helicopter, and LME of a steel gear by a copper alloy from an overheated bearing. The case histories illustrate how LME and SMIE failures can be diagnosed and distinguished from other failure modes, and shed light on the underlying causes of failure and how they might be prevented. The application of LME as a failure analysis tool is also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
Abstract
Engineering component and structure failures manifest through many mechanisms but are most often associated with fracture in one or more forms. This article introduces the subject of fractography and aspects of how it is used in failure analysis. The basic types of fracture processes (ductile, brittle, fatigue, and creep) are described briefly, principally in terms of fracture appearances. A description of the surface, structure, and behavior of each fracture process is also included. The article provides a framework from which a prospective analyst can begin to study the fracture of a component of interest in a failure investigation. Details on the mechanisms of deformation, brittle transgranular fracture, intergranular fracture, fatigue fracture, and environmentally affected fracture are also provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... in making connections to an aluminum alloy 2024-T431 valve body produced excessive stress in the threads and resulted in failure of the valve body by SCC in a service environment of hydraulic fluid that contained small amounts of moisture and chloride. Similarly, stresses on tapered threads on a cast...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006834
EISBN: 978-1-62708-329-4
Abstract
This article is dedicated to the fields of mechanical engineering and machine design. It also intends to give a nonexhaustive view of the preventive side of the failure analysis of rolling-element bearings (REBs) and of some of the developments in terms of materials and surface engineering. The article presents the nomenclature, numbering systems, and worldwide market of REBs as well as provides description of REBs as high-tech machine components. It discusses heat treatments, performance, and properties of bearing materials. The processes involved in the examination of failed bearings are also explained. Finally, the article discusses in detail the characteristics and prevention of the various types of failures of REBs: wear, fretting, corrosion, plastic flow, rolling-contact fatigue, and damage. The article includes an Appendix, which lists REB-related abbreviations, association websites, and ISO standards.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003543
EISBN: 978-1-62708-180-1
Abstract
Overload failures refer to the ductile or brittle fracture of a material when stresses exceed the load-bearing capacity of a material. This article reviews some mechanistic aspects of ductile and brittle crack propagation, including a discussion on mixed-mode cracking, which may also occur when an overload failure is caused by a combination of ductile and brittle cracking mechanisms. It describes the general aspects of fracture modes and mechanisms. The article discusses some of the material, mechanical, and environmental factors that may be involved in determining the root cause of an overload failure. It also presents examples of thermally and environmentally induced embrittlement effects that can alter the overload fracture behavior of metals.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
Abstract
This article aims to identify and illustrate the types of overload failures, which are categorized as failures due to insufficient material strength and underdesign, failures due to stress concentration and material defects, and failures due to material alteration. It describes the general aspects of fracture modes and mechanisms. The article briefly reviews some mechanistic aspects of ductile and brittle crack propagation, including discussion on mixed-mode cracking. Factors associated with overload failures are discussed, and, where appropriate, preventive steps for reducing the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during practical failure investigation. The article describes the effects of mechanical loading on a part in service and provides information on laboratory fracture examination.