Skip Nav Destination
Close Modal
Search Results for
2014-T652
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3 Search Results for
2014-T652
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001297
EISBN: 978-1-62708-215-0
... Abstract A helicopter tail rotor blade spar failed in fatigue, allowing the blade to separate during flight. The 2014-T652 aluminum alloy blade had a hollow spar shank filled with lead wool ballast and a thermoset polymeric seal. A corrosion pit was present at the origin of the fatigue zone...
Abstract
A helicopter tail rotor blade spar failed in fatigue, allowing the blade to separate during flight. The 2014-T652 aluminum alloy blade had a hollow spar shank filled with lead wool ballast and a thermoset polymeric seal. A corrosion pit was present at the origin of the fatigue zone and numerous trails of corrosion pits were located on the spar cavity's inner surfaces. The corrosion pitting resulted from the failure of the thermoset seal in the spar shank cavity. The seal failure allowed moisture to enter into the cavity. The moisture then served as an electrolyte for galvanic corrosion between the lead wool ballast and the aluminum spar inner surface. The pitting initiated fatigue cracking which led to the spar failure.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... blade spar shank was constructed of 2014-T652 aluminum alloy. The spar was hollow with the cavity filled with a lead wool ballast material and sealed with a thermoset material. One blade separated in flight, but fortunately a successful emergency landing was made. The outboard section that had separated...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... blade spar shank was constructed of 2014-T652 aluminum alloy. The spar was hollow, with the cavity filled with a lead wool ballast material and sealed with a thermoset material. One blade separated in flight, but fortunately a successful emergency landing was made. The outboard section that had...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.