Skip Nav Destination
Close Modal
Search Results for
2014-T6
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 35 Search Results for
2014-T6
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046022
EISBN: 978-1-62708-217-4
... Abstract A forged aluminum alloy 2014-T6 catapult-hook attachment fitting (anodized by the chromic acid process to protect it from corrosion) from a naval aircraft broke in service. Spectrographic analysis, visual examination, microscopic examination, and tensile analysis showed minute cracks...
Abstract
A forged aluminum alloy 2014-T6 catapult-hook attachment fitting (anodized by the chromic acid process to protect it from corrosion) from a naval aircraft broke in service. Spectrographic analysis, visual examination, microscopic examination, and tensile analysis showed minute cracks on the inside surface of a bearing hole, and small areas of pitting corrosion were visible on the exterior surface of the fitting. The analysis also revealed a small number of rosettes, suggestive of eutectic melting, in an otherwise normal structure. These examinations and analyses support the conclusion that the presence of chromic acid stain on the fracture surface proved that the forging had cracked before anodizing. This suggest that the crack initiated during straightening, either after machining or after heat treatment. The structure and composition of the alloy appear to have been acceptable. Ductility was acceptable so rosettes found in the microstructure are believed to have been nondamaging. Had they contributed to the failure, the ductility would have been very low. The recommendations included inspection for cracks and revising the manufacturing process to include a fluorescent liquid-penetrant inspection before anodizing, because chromic acid destroys the penetrant. This inspection would reduce the possibility of cracked parts being used in service.
Image
Published: 01 January 2002
Fig. 37 Aluminum alloy 2014-T6 hinge bracket that failed by SCC in service. (a) Hinge bracket. Actual size. Arrow indicates crack. (b) Micrograph showing secondary cracking adjacent and parallel to the fracture surface. Etched with Keller's reagent. 250×
More
Image
Published: 01 January 2002
Fig. 38 Forged aluminum alloy 2014-T6 actuator barrel lug that failed by SCC. (a) View of the lug. 2×. Fracture at top was the initial fracture; arrow indicates location of a tiny region of pitting corrosion (on back side of lug) at which failure originated. Final fracture is at left. (b
More
Image
in Fracture of an Aluminum Alloy 2014-T6 Catapult-Hook Attachment Fitting for Naval Aircraft
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Catapult-hook attachment fitting forged from aluminum alloy 2014-T6. The component cracked during straightening, then fractured in service
More
Image
in Stress-Corrosion Cracking of a Forged Aircraft Lug
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Forged aluminum alloy 2014-T6 actuator barrel lug that failed by SCC. (a) View of the lug. 2×. Fracture at top was the initial fracture; arrow indicates location of a tiny region of pitting corrosion (on back side of lug) at which failure originated. Final fracture is at left. (b
More
Image
in Fretting and Corrosion in Aircraft Components
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Image
in Stress-Corrosion Cracking of Aircraft Hinge Brackets
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Aluminum alloy 2014-T6 hinge bracket that failed by SCC in service. (a) Hinge bracket. Actual size. Arrow indicates crack. (b) Micrograph showing secondary cracking adjacent and parallel to the fracture surface. Etched with Keller's reagent. 250×
More
Image
in Corrosion Fatigue of Aircraft Nose Wheels
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Aluminum alloy 2014-T6 aircraft nose wheel (a) that failed at the flange. (b) Close-up of tube well on wheel 31. (c) Appearance of flange failure on wheel 67. The topography is typical of other flange failures. (d) Close-up of wheel 31; note indentation (arrow). (e) Close-up of wheel
More
Image
in Fatigue Cracking That Originated at a Material Defect in a Forged Aircraft Wheel Half
> ASM Failure Analysis Case Histories: Air and Spacecraft
Published: 01 June 2019
Fig. 1 Aluminum alloy 2014-T6 aircraft wheel half that was removed from service because it developed a fatigue crack at a material defect. Detail A shows the area where the crack occurred and a view of the fracture surface revealed when the hub was broken open to examine the crack. View B-B
More
Image
Published: 15 January 2021
Fig. 48 (a) Photograph of an aluminum alloy 2014-T6 hinge bracket. Arrow indicates crack location. (b) Micrograph of a cross section prepared through the fracture surface. Arrows indicate stress-corrosion cracking. Original magnification: 250×
More
Image
Published: 15 January 2021
Fig. 49 (a) Photograph of forged aluminum alloy 2014-T6 actuator barrel lug that fractured due to stress-corrosion cracking. Arrow indicates location of a region of pitting corrosion on back side of lug at which the fracture originated. Final fracture occurred at bottom left. (b) Micrograph
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047169
EISBN: 978-1-62708-217-4
... Abstract The flange on an outboard main-wheel half (aluminum alloy 2014-T6 forging) on a commercial aircraft fractured during takeoff. The failure was discovered later during a routine enroute check. The flange section that broke away was recovered at the airfield from which the plane took off...
Abstract
The flange on an outboard main-wheel half (aluminum alloy 2014-T6 forging) on a commercial aircraft fractured during takeoff. The failure was discovered later during a routine enroute check. The flange section that broke away was recovered at the airfield from which the plane took off and was thus available for examination. Failure occurred after 37 landings (about 298 roll km, or 185 roll miles). Examination of the fracture surfaces revealed that a forging defect was present in the wall of the wheel half. The anodized coating showed distinct twin-parallel and end-grain patterns between which the fracture occurred. The periphery of the defect was the site of several small fatigue cracks that eventually progressed through the remaining wall. Rapid fatigue then progressed circumferentially. Metallographic examination using Keller's reagent showed that the microstructure was normal for aluminum alloy 2014-T6 and the hardness surpassed the minimum hardness required for aluminum alloy 2014-T6. An abrupt change in the direction of grain flow across the fracture plane indicated that the wall had buckled during forging. This evidence supported the conclusion that the wheel half failed in the flange by fatigue as the result of a rather large subsurface forging defect. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091674
EISBN: 978-1-62708-217-4
... Abstract Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported...
Abstract
Forged aluminum alloy 2014-T6 hinge brackets in naval aircraft rudder and aileron linkages were found cracked in service. The cracks were in the hinge lugs, adjacent to a bushing made of cadmium-plated 4130 steel. Investigation (visual inspection and 250X micrographs) supported the conclusion that the failure of the hinge brackets occurred by SCC. The corrosion was caused by exposure to a marine environment in the absence of paint in stressed areas due to chipping. The stress resulted from the interference fit of the bushing in the lug hole. Recommendations included inspecting all hinge brackets in service for cracks and for proper maintenance of paint. Also suggested was replacing the aluminum alloy 2015-T6 with alloy 7075-T6, and surface treatment for the 7075-T6 brackets was recommended using sulfuric acid anodizing and dichromate sealing. Finally, it was also recommended that the interference fit of the bushing in the lug hole be discontinued.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091678
EISBN: 978-1-62708-217-4
... Abstract During a routine shear-pin check, the end lug on the barrel of the forward canopy actuator on a naval aircraft was found to have fractured. The lug was forged from aluminum alloy 2014-T6. Investigation (visual inspection, 2x views, and 140X micrographs etched with Keller's reagent...
Abstract
During a routine shear-pin check, the end lug on the barrel of the forward canopy actuator on a naval aircraft was found to have fractured. The lug was forged from aluminum alloy 2014-T6. Investigation (visual inspection, 2x views, and 140X micrographs etched with Keller's reagent) supported the conclusion that the cause of failure was SCC resulting from exposure to a marine environment. The fracture occurred in normal operation at a point where damage from pitting and intergranular corrosion acted as a stress raiser, not because of overload. The pitting and intergranular attack on the lug were evidence that the surface protection of the part had been inadequate as manufactured or had been damaged in service and not properly repaired in routine maintenance. Recommendations included anodizing the lug and barrel in sulfuric acid and giving them a dichromate sealing treatment, followed by application of a coat of paint primer. During routine maintenance checks, a careful examination was suggested to look for damage to the protective coating, and any necessary repairs should be made by cleaning, priming, and painting. Severely corroded parts should be removed from service.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047165
EISBN: 978-1-62708-217-4
... Abstract Two outboard main-wheel halves (aluminum alloy 2014-T6 forged) from a commercial aircraft were removed from service because of failure. One wheel half was in service for 54 days and had made 130 landings (about 1046 roll km, or 650 roll mi) when crack indications were discovered during...
Abstract
Two outboard main-wheel halves (aluminum alloy 2014-T6 forged) from a commercial aircraft were removed from service because of failure. One wheel half was in service for 54 days and had made 130 landings (about 1046 roll km, or 650 roll mi) when crack indications were discovered during eddy-current testing. The flange on the second wheel half failed after only 31 landings, when about 46 cm (18 in.) of the flange broke off as the aircraft was taxiing. Stains on the fracture surfaces were used to determine when cracking was initiated. The analysis (visual inspection, liquid penetrant inspection, and micrographs with deep etching in aqueous 20% sodium hydroxide) supported the conclusion that failure on both wheel halves was by fatigue caused by a forging defect resulting from abnormal transverse grain flow. The crack in the first wheel half occurred during service, and the surfaces became oxidized. Because the fracture surface of the second wheel half had chromic acid stains, it was obvious that the forging defect was open to the surface during anodizing. No recommendations were made except to notify the manufacturer.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006428
EISBN: 978-1-62708-217-4
... Abstract Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67...
Abstract
Four nose wheels fabricated from 2014-T6 aluminum alloy and cold worked at the flange were examined. Visual examination showed that the failure started in the tube well area on the wheel with serial number 31. The failure initiated in the flange fillet on wheels with serial numbers 67, 217, and 250. Scanning electron microscopy (SEM) examination of the fractures showed that failure initiated by SCC or a corrosion pit on all failures examined. The failures then progressed by fatigue. Dye penetrant testing revealed no additional flaws on the wheels that had failed in the flange area. There was, however, one flaw area in the flange of the wheel that failed in the tube well. This flaw resembled a corrosion pit. It was concluded that failure of nose wheels 67, 217, and 250 was caused by cracking due to SCC or pitting. The failures progressed by fatigue. Because failure occurred in the same general area on all three wheels, these locations are suspect as being underdesigned. It was recommended that the nose wheel be redesigned and additional service data be accumulated to understand the contributing factors that resulted in wheel failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001903
EISBN: 978-1-62708-217-4
... in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed...
Abstract
Fretting and/or fretting corrosion fatigue have been observed on such parts as main rotor counterweight tie rods, fixed-pitch propeller blades, propeller blade clamps, pressure regulator lines, and landing gear support brackets. Microcracks started from severe corrosion pits in a failed control rotor spar tube assembly made of cadmium-plated AISI 4130 Cr-Mo alloy steel. Inadequate design was responsible for the failure. A lower tine of the main rotor blade cuff failed in fatigue. The rotor blade cuff was forged of 2014-T6 aluminum alloy. Initial stages of crack growth displayed features typical of low stress intensity fatigue of aluminum alloys. The fatigue resulted from abnormal fretting owing to inadequate torquing of the main retention bolts. Aircraft maintenance engineers and owners were advised to adhere to specifications when torquing this joint.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001510
EISBN: 978-1-62708-217-4
... direction that must be considered of primary importance in material selection for design configuration. A Navy UH-1N helicopter main rotor blade grip manufactured from a 2014-T6 aluminum alloy forging failed because of a design flaw that left a high residual tensile stress along the short transverse plane...
Abstract
Proper stress analysis during component design is imperative for accurate life and performance prediction. The total stress on a part is comprised of the applied design stress and any residual stress that may exist due to forming or machining operations. Stress-corrosion cracking may be defined as the spontaneous failure of a metal resulting from the combined effects of a corrosive environment and the effective component of tensile stress acting on the structure. However, because of the orientation dependence in aluminum, it is the residual stress occurring in the most susceptible direction that must be considered of primary importance in material selection for design configuration. A Navy UH-1N helicopter main rotor blade grip manufactured from a 2014-T6 aluminum alloy forging failed because of a design flaw that left a high residual tensile stress along the short transverse plane; this in turn provided the necessary condition for stress corrosion to initiate. A complete failure investigation to ascertain the exact cause of the failure was conducted utilizing stereomicroscopic examination, scanning electron microscopy, metallographic inspection and interpretation, energy-dispersive chemical analysis, physical and mechanical evaluation. Stereomicroscopic examination of the opened crack fracture surface revealed one large fan-shaped region that had propagated radially through the thickness of the material from two distinct origin areas on the internal diam of the grip. Higher magnification inspection near the origin area revealed a flat, wood-like appearance. Scanning electron microscopy divulged the presence of substantial mud cracking and intergranular separation on the fracture surface. Metallographic examination revealed intergranular cracking and substantial leaf separation along the elongated grains parallel to the fracture surface. Chemical composition and hardness requirements were found to be as specified. The blade grip failed due to a stress corrosion crack which initiated on the inner diam and propagated in the short transverse direction through the thickness of the component. The high residual tensile stress in the part resulting from the forging and exposed after machining of the inner diam, combined with the presence of moisture, provided the necessary conditions to facilitate crack initiation and propagation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047125
EISBN: 978-1-62708-217-4
... Abstract A commercial aircraft wheel half, machined from an aluminum alloy 2014 forging that had been heat treated to the T6 temper, was removed from service because a crack was discovered in the area of the grease-dam radius during a routine inspection. Neither the total number of landings nor...
Abstract
A commercial aircraft wheel half, machined from an aluminum alloy 2014 forging that had been heat treated to the T6 temper, was removed from service because a crack was discovered in the area of the grease-dam radius during a routine inspection. Neither the total number of landings nor the roll mileage was reported, but about 300 days had elapsed between the date of manufacture and the date the wheel was removed from service. The analysis (visual inspection, macrographs, micrographs, electron microprobe) supported the conclusions that the wheel half failed by fatigue. The fatigue crack originated at a material imperfection and progressed in more than one plane because changes in the direction of wheel rotation altered the direction of the applied stresses. Recommendations included rewriting the inspection specifications to require sound forgings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091669
EISBN: 978-1-62708-227-3
... of only aluminum alloys 6061-T6 and T651 and 2024-T6, T62, and T851. Fittings Fuel lines Marine environments Missiles 2017 UNS A92017 2014 UNS A92014 Stress-corrosion cracking During a routine inspection, cracks were discovered in several aluminum alloy coupling nuts ( Fig. 1a...
Abstract
During a routine inspection, cracks were discovered in several aluminum alloy (similar to either 2014 or 2017) coupling nuts on the fuel lines of a missile. The fuel lines had been exposed to a marine atmosphere for six months while the missile stood on an outdoor test stand near the seacoast. A complete check was then made, both visually and with the aid of a low-power magnifying glass, of all coupling nuts of this type on the missile. Investigation (visual inspection, spectrographic and chemical analysis, and metallographic examination) supported the conclusion that the cracking of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction of stress. The elongated grain structure transverse to the direction of stress was a consequence of following the generally used procedure of machining this type of nut from bar stock. Recommendations included changing the materials specification for new coupling nuts for this application to permit use of only aluminum alloys 6061-T6 and T651 and 2024-T6, T62, and T851.
1