Skip Nav Destination
Close Modal
Search Results for
17-4 PH
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 102 Search Results for
17-4 PH
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... effect of galvanic coupling, hydrogen embrittlement. Bolts Galvanic corrosion Spacecraft 17-4 PH UNS S17400 Hydrogen damage and embrittlement Fig. 1 Success of the mission depends greatly on the reliability of high-strength stainless steel fasteners. Analysis of service failures...
Abstract
Several stainless steel bolts used on a Titan Space Launch Vehicle broke at the shank and failure was attributed to stress-corrosion cracking. But results could not be duplicated in the laboratory with salt-solution immersion tests until the real culprit was established: the secondary effect of galvanic coupling, hydrogen embrittlement.
Image
Published: 01 January 2002
Fig. 23 Two views of the fracture surface of a forged 17-4 PH stainless steel steam-turbine blade that failed by corrosion fatigue originating at severe corrosion pitting. (a) Light fractograph showing primary origin (arrow) and three secondary origins (along right edge below primary origin
More
Image
Published: 01 January 2002
Fig. 31 Power plant gate-valve stem of 17-4 PH stainless that failed by SCC in high-purity water. (a) A fracture surface of the valve stem showing stained area and cup-and-cone shearing at perimeter. 0.7×. (b) Micrograph showing secondary intergranular cracks branching from fracture surface
More
Image
Published: 01 January 2002
Fig. 10 Mass loss vs. number of compound impact cycles for 17-4 PH stainless steel counterfaces tested with CPM-10V steel specimens (impact stress 69 MPa). Source: Ref 26
More
Image
Published: 15 January 2021
Fig. 12 Mass loss versus number of compound-impact cycles for 17-4 PH stainless steel counterfaces tested with CPM-10V steel specimens (impact stress: 69 MPa, or 10 ksi). Source: Ref 31
More
Image
Published: 15 January 2021
Fig. 23 Two views of the fracture surface of a forged 17-4 PH stainless steel steam-turbine blade that failed by corrosion fatigue originating at severe corrosion pitting. (a) Light fractograph showing primary origin (arrow) and three secondary origins (along right edge below primary origin
More
Image
Published: 15 January 2021
Fig. 40 Stress-corrosion cracking in a 17-4 PH stainless steel gate-valve stem that failed in high-purity water. (a) Photograph of the valve stem fracture surface showing stained area and cup-and-cone shearing at perimeter. (b) Micrograph showing secondary intergranular cracks branching from
More
Image
in Failure of 17-4 PH Stainless Steel Bolts on a Titan Space Launch Vehicle
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Image
in Stress-Corrosion Cracking Failure of a Sensitized Valve Stem
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Power plant gate-valve stem of 17-4 PH stainless that failed by SCC in high-purity water. (a) A fracture surface of the valve stem showing stained area and cup-and-cone shearing at perimeter. 0.7×. (b) Micrograph showing secondary intergranular cracks branching from fracture surface. 50×
More
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Image
in Failures Related to Metal Additive Manufacturing
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 13 Images of 17-4 PH stainless steel. (a) Metal additive manufacturing process. (b) Wrought product. Original magnification of both: 200×
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047109
EISBN: 978-1-62708-233-4
... Abstract A series of poppet-valve stems fabricated from 17-4 PH (AISI type 630) stainless steel failed prematurely in service during the development of a large combustion assembly. The poppet valves were part of a scavenging system that evacuated the assembly after each combustion cycle...
Abstract
A series of poppet-valve stems fabricated from 17-4 PH (AISI type 630) stainless steel failed prematurely in service during the development of a large combustion assembly. The poppet valves were part of a scavenging system that evacuated the assembly after each combustion cycle. The function of the valve is to open and close a port; thus, the valve is subjected to both impact and tensile loading. Analysis (visual inspection, hardness testing, and stress analysis) supported the conclusions that the valve stems were impact loaded to stresses in excess of their yield strength. That they failed in the threaded portion also suggests a stress-concentration effect. Recommendations included changing the material spec to a higher-strength material with greater impact strength. In this case, it was recommended that the stems, despite any possible design changes, be manufactured from an alloy such as PH 13-8Mo, which can be processed to a yield strength of 1379 MPa (200 ksi), with impact energies of the order of 81 J (60 ft·lbf) at room temperature.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046371
EISBN: 978-1-62708-234-1
... had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained...
Abstract
When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained any stainless steel from the spacer. Other items for investigation were the nature of the bond between the galled spot and the inner cone and any evidence of overtempering or rehardening resulting from localized overheating. Analysis (visual inspection, electron probe x-ray microanalysis, microscopic examination, and hardness testing) supported the conclusions that galling had been caused by a combination of local overload and abnormal vibration of mating parts of the roller-bearing assembly. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0001667
EISBN: 978-1-62708-225-9
... with 17-4 PH stainless steel bolts (Condition H 1150M) having a hardness of 22 HRC. Bolts Chlorides Corrosion environment 4137 UNS G41370 Stress-corrosion cracking Hydrogen damage and embrittlement Figure 1 shows an example of hydrogen-assisted SCC failure of four AISI 4137 steel bolts...
Abstract
Hydrogen-assisted stress-corrosion cracking failure occurred in four AISI 4137 chromium molybdenum steel bolts having a hardness of 42 HRC. The normal service temperature (400 deg C, or 750 deg F) was too high for hydrogen embrittlement but, the bolts were subjected also to extended shutdown periods at ambient temperatures. The corrosive environment contained trace hydrogen chloride and acetic acid vapors as well as calcium chloride if leaks occurred. The exact service life was unknown. The bolt surfaces showed extensive corrosion deposits. Cracks had initiated at both the thread roots and the fillet under the bolt head. Multiple, branched cracking was present in a longitudinal section through the failed end of one bolt, typical of hydrogen-assisted SCC in hardened steels. Chlorides were detected within the cracks and on the fracture surface. The failed bolts were replaced with 17-4 PH stainless steel bolts (Condition H 1150M) having a hardness of 22 HRC.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047917
EISBN: 978-1-62708-227-3
... that the failure was caused by fatigue initiated in corrosion pits (caused by seawater). The fracture was found to be transgranular. It was recommended that the inner and outer rings should both be made from the more corrosion resistant 17-4 PH (AISI type 630) stainless steel. Cyclic load Hydrofoils Stress...
Abstract
The support bearing of a hydrofoil vessel failed after only 220 h of operation. The bearing consisted of an outer ring made of chromium-plated AISI type 416 stainless steel and an inner ring with a spherical outer surface made of AISI type 440C stainless steel, with a plastic material, bonded to the outer ring, between the two. The inner ring was found to have failed in four places. The two metallic rings were allowed to come in contact with each other by the disappearance of the plastic material. It was revealed by examination of the fracture surfaces of the inner ring that the failure was caused by fatigue initiated in corrosion pits (caused by seawater). The fracture was found to be transgranular. It was recommended that the inner and outer rings should both be made from the more corrosion resistant 17-4 PH (AISI type 630) stainless steel.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001361
EISBN: 978-1-62708-215-0
... Abstract A 17-4 PH steering actuator rod end body broke during normal take-off. Results of failure analysis revealed that the wall thickness of the race was much below the design limits, thus causing the race to rest on the body's swaged edges rather than on the load carrying centerline...
Abstract
A 17-4 PH steering actuator rod end body broke during normal take-off. Results of failure analysis revealed that the wall thickness of the race was much below the design limits, thus causing the race to rest on the body's swaged edges rather than on the load carrying centerline of the body. This assembly condition generated abnormal high loads on the swaged edges, ultimately resulting in fatigue failure. To prevent a recurrence of similar failure in the future, the dimensions of the race in the spherical bearing were changed, no further failure occurred.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001026
EISBN: 978-1-62708-214-3
... Abstract Cracks were discovered in the cast 17-4 PH stainless steel outboard leading edge flap support of an aircraft wing during overhaul inspection. Failure analysis focused on an apparently intergranular area of fracture surface. It was determined that the original mode of crack growth...
Abstract
Cracks were discovered in the cast 17-4 PH stainless steel outboard leading edge flap support of an aircraft wing during overhaul inspection. Failure analysis focused on an apparently intergranular area of fracture surface. It was determined that the original mode of crack growth was cleavage, probably caused by cast-in hydrogen. The intergranular appearance resulted from heat treatment of the already cracked part, which caused the formation of grain-boundary “growth figures” on the exposed crack surfaces. It was recommended that the castings be more closely inspected for defects before further processing and that foundry practices be reviewed to correct deficiencies leading to excessive hydrogen absorption during melting and casting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091640
EISBN: 978-1-62708-229-7
... Abstract A valve stem made of 17-4 PH (AISI type 630) stainless steel, which was used for operating a gate valve in a steam power plant, failed after approximately four months of service, during which it had been exposed to high-purity water at approximately 175 deg C (350 deg F) and 11 MPa...
Abstract
A valve stem made of 17-4 PH (AISI type 630) stainless steel, which was used for operating a gate valve in a steam power plant, failed after approximately four months of service, during which it had been exposed to high-purity water at approximately 175 deg C (350 deg F) and 11 MPa (1600 psi). The valve stem was reported to have been solution heat treated at 1040 +/-14 deg C (1900 +/-25 deg F) for 30 min and either air quenched or oil quenched to room temperature. The stem was then reportedly aged at 550 to 595 deg C (1025 to 1100 deg F) for four hours. Investigation (visual inspection, 0.7x/50x images, hardness testing, reheat treatment, and metallographic examination) supported the conclusion that failure was by progressive SCC that originated at a stress concentration. Also, the solution heat treatment had been either omitted or performed at too high of a temperature, and the aging treatment had been at too low of a temperature. Recommendations included the following heat treatments: after forging, solution heat treat at 1040 deg C (1900 deg F) for one hour, then oil quench; to avoid susceptibility to SCC, age at 595 deg C (1100 deg F) for four hours, then air cool.
Image
Published: 01 January 2002
Fig. 43 Effect of Δ K on fatigue fracture mechanisms. (a) Alpha-beta titanium alloy. (b) EN-24 and 300 M steels. (c) 17-4 PH stainless steel. Source: Ref 31
More
Image
Published: 01 January 2002
Fig. 11 Mass loss vs. sliding velocity for compound impact testing of titanium alloy RMI 5522S specimens against 17-4 PH stainless steel counterfaces (impact stress 18.6 MPa). Source: Ref 20
More
1