Skip Nav Destination
Close Modal
By
S. Maruthamuthu, P. Dhandapani, S. Ponmariappan, S. Sathiyanarayanan, S. Muthukrishnan ...
Search Results for
17-4 PH
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 85 Search Results for
17-4 PH
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001727
EISBN: 978-1-62708-225-9
... effect of galvanic coupling, hydrogen embrittlement. Bolts Galvanic corrosion Spacecraft 17-4 PH UNS S17400 Hydrogen damage and embrittlement Fig. 1 Success of the mission depends greatly on the reliability of high-strength stainless steel fasteners. Analysis of service failures...
Abstract
Several stainless steel bolts used on a Titan Space Launch Vehicle broke at the shank and failure was attributed to stress-corrosion cracking. But results could not be duplicated in the laboratory with salt-solution immersion tests until the real culprit was established: the secondary effect of galvanic coupling, hydrogen embrittlement.
Image
in Stress-Corrosion Cracking Failure of a Sensitized Valve Stem
> ASM Failure Analysis Case Histories: Power Generating Equipment
Published: 01 June 2019
Fig. 1 Power plant gate-valve stem of 17-4 PH stainless that failed by SCC in high-purity water. (a) A fracture surface of the valve stem showing stained area and cup-and-cone shearing at perimeter. 0.7×. (b) Micrograph showing secondary intergranular cracks branching from fracture surface. 50×
More
Image
in Failure of 17-4 PH Stainless Steel Bolts on a Titan Space Launch Vehicle
> ASM Failure Analysis Case Histories: Mechanical and Machine Components
Published: 01 June 2019
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0047109
EISBN: 978-1-62708-233-4
... Abstract A series of poppet-valve stems fabricated from 17-4 PH (AISI type 630) stainless steel failed prematurely in service during the development of a large combustion assembly. The poppet valves were part of a scavenging system that evacuated the assembly after each combustion cycle...
Abstract
A series of poppet-valve stems fabricated from 17-4 PH (AISI type 630) stainless steel failed prematurely in service during the development of a large combustion assembly. The poppet valves were part of a scavenging system that evacuated the assembly after each combustion cycle. The function of the valve is to open and close a port; thus, the valve is subjected to both impact and tensile loading. Analysis (visual inspection, hardness testing, and stress analysis) supported the conclusions that the valve stems were impact loaded to stresses in excess of their yield strength. That they failed in the threaded portion also suggests a stress-concentration effect. Recommendations included changing the material spec to a higher-strength material with greater impact strength. In this case, it was recommended that the stems, despite any possible design changes, be manufactured from an alloy such as PH 13-8Mo, which can be processed to a yield strength of 1379 MPa (200 ksi), with impact energies of the order of 81 J (60 ft·lbf) at room temperature.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0047917
EISBN: 978-1-62708-227-3
... that the failure was caused by fatigue initiated in corrosion pits (caused by seawater). The fracture was found to be transgranular. It was recommended that the inner and outer rings should both be made from the more corrosion resistant 17-4 PH (AISI type 630) stainless steel. Cyclic load Hydrofoils Stress...
Abstract
The support bearing of a hydrofoil vessel failed after only 220 h of operation. The bearing consisted of an outer ring made of chromium-plated AISI type 416 stainless steel and an inner ring with a spherical outer surface made of AISI type 440C stainless steel, with a plastic material, bonded to the outer ring, between the two. The inner ring was found to have failed in four places. The two metallic rings were allowed to come in contact with each other by the disappearance of the plastic material. It was revealed by examination of the fracture surfaces of the inner ring that the failure was caused by fatigue initiated in corrosion pits (caused by seawater). The fracture was found to be transgranular. It was recommended that the inner and outer rings should both be made from the more corrosion resistant 17-4 PH (AISI type 630) stainless steel.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0091640
EISBN: 978-1-62708-229-7
... Abstract A valve stem made of 17-4 PH (AISI type 630) stainless steel, which was used for operating a gate valve in a steam power plant, failed after approximately four months of service, during which it had been exposed to high-purity water at approximately 175 deg C (350 deg F) and 11 MPa...
Abstract
A valve stem made of 17-4 PH (AISI type 630) stainless steel, which was used for operating a gate valve in a steam power plant, failed after approximately four months of service, during which it had been exposed to high-purity water at approximately 175 deg C (350 deg F) and 11 MPa (1600 psi). The valve stem was reported to have been solution heat treated at 1040 +/-14 deg C (1900 +/-25 deg F) for 30 min and either air quenched or oil quenched to room temperature. The stem was then reportedly aged at 550 to 595 deg C (1025 to 1100 deg F) for four hours. Investigation (visual inspection, 0.7x/50x images, hardness testing, reheat treatment, and metallographic examination) supported the conclusion that failure was by progressive SCC that originated at a stress concentration. Also, the solution heat treatment had been either omitted or performed at too high of a temperature, and the aging treatment had been at too low of a temperature. Recommendations included the following heat treatments: after forging, solution heat treat at 1040 deg C (1900 deg F) for one hour, then oil quench; to avoid susceptibility to SCC, age at 595 deg C (1100 deg F) for four hours, then air cool.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0046371
EISBN: 978-1-62708-234-1
... had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained...
Abstract
When a roller-bearing assembly was removed from an aircraft for inspection after a short time in service, several areas of apparent galling were noticed around the inside surface of the inner cone of the bearing. These areas were roughly circular spots of built-up metal. The bearing had not seized, and there was no evidence of heat discoloration in the galled areas. The inner cone, made of modified 4720 steel and carburized for wear resistance, rode on an AISI type 630 (17-4 PH) stainless steel spacer. Consequently, it was desirable to determine whether the galled spots contained any stainless steel from the spacer. Other items for investigation were the nature of the bond between the galled spot and the inner cone and any evidence of overtempering or rehardening resulting from localized overheating. Analysis (visual inspection, electron probe x-ray microanalysis, microscopic examination, and hardness testing) supported the conclusions that galling had been caused by a combination of local overload and abnormal vibration of mating parts of the roller-bearing assembly. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0001667
EISBN: 978-1-62708-225-9
... with 17-4 PH stainless steel bolts (Condition H 1150M) having a hardness of 22 HRC. Bolts Chlorides Corrosion environment 4137 UNS G41370 Stress-corrosion cracking Hydrogen damage and embrittlement Figure 1 shows an example of hydrogen-assisted SCC failure of four AISI 4137 steel bolts...
Abstract
Hydrogen-assisted stress-corrosion cracking failure occurred in four AISI 4137 chromium molybdenum steel bolts having a hardness of 42 HRC. The normal service temperature (400 deg C, or 750 deg F) was too high for hydrogen embrittlement but, the bolts were subjected also to extended shutdown periods at ambient temperatures. The corrosive environment contained trace hydrogen chloride and acetic acid vapors as well as calcium chloride if leaks occurred. The exact service life was unknown. The bolt surfaces showed extensive corrosion deposits. Cracks had initiated at both the thread roots and the fillet under the bolt head. Multiple, branched cracking was present in a longitudinal section through the failed end of one bolt, typical of hydrogen-assisted SCC in hardened steels. Chlorides were detected within the cracks and on the fracture surface. The failed bolts were replaced with 17-4 PH stainless steel bolts (Condition H 1150M) having a hardness of 22 HRC.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001026
EISBN: 978-1-62708-214-3
... as (a). Abstract Cracks were discovered in the cast 17-4 PH stainless steel outboard leading edge flap support of an aircraft wing during overhaul inspection. Failure analysis focused on an apparently intergranular area of fracture surface. It was determined that the original mode of crack growth was cleavage...
Abstract
Cracks were discovered in the cast 17-4 PH stainless steel outboard leading edge flap support of an aircraft wing during overhaul inspection. Failure analysis focused on an apparently intergranular area of fracture surface. It was determined that the original mode of crack growth was cleavage, probably caused by cast-in hydrogen. The intergranular appearance resulted from heat treatment of the already cracked part, which caused the formation of grain-boundary “growth figures” on the exposed crack surfaces. It was recommended that the castings be more closely inspected for defects before further processing and that foundry practices be reviewed to correct deficiencies leading to excessive hydrogen absorption during melting and casting.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001361
EISBN: 978-1-62708-215-0
.... The fractograph has been rotated 92.5° relative to (a). 9400×. (c) SEM fractograph of a typical field on the fracture surface. The fractograph was overexposed to highlight the secondary cracks/inclusions network. 1128× Abstract A 17-4 PH steering actuator rod end body broke during normal take-off...
Abstract
A 17-4 PH steering actuator rod end body broke during normal take-off. Results of failure analysis revealed that the wall thickness of the race was much below the design limits, thus causing the race to rest on the body's swaged edges rather than on the load carrying centerline of the body. This assembly condition generated abnormal high loads on the swaged edges, ultimately resulting in fatigue failure. To prevent a recurrence of similar failure in the future, the dimensions of the race in the spherical bearing were changed, no further failure occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001707
EISBN: 978-1-62708-217-4
... (S13800), 15-5 PH (S15500), 17-4 PH (S17400), Custom 450 (S45000), Custom 455(S45500). The martensitic alloys only require a single step heat treatment to obtain maximum strength. Of these alloys, PH 13-8 Mo has often been specified for aerospace applications requiring high strengths (i.e...
Abstract
The failures of two aircraft components, one from a landing gear and the other from an ejector rack mechanism, were investigated. Both were made from PH 13-8 Mo (UNS S13800) precipitation-hardening stainless steel which had been heat treated to the H1000 and H950 tempers respectively and then chromium plated. The parts were characterized metallographically and mechanically and were found to be compliant. Detailed fractographic examination revealed that the first stage of both failures was similar: subsurface initiation of numerous cracks with a wide range of orientations and cleavage like features. The cracking was followed by fatigue in one case and catastrophic failure in the other. Hydrogen embrittlement was identified as the most likely mechanism of failure.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003565
EISBN: 978-1-62708-180-1
... was varied by altering the contact area and, therefore, the larger-diameter specimens would have lost more mass. Fig. 8 Height change vs. number of compound impact cycles for aluminium 2011 T3 specimens tested against 17-4 PH stainless steel counterfaces with varying impact stresses (sliding velocity...
Abstract
This article discusses the generic features of impact wear on metals, ceramics, and polymers. It describes normal impact wear and compound impact wear, as well as the features of impact wear testing apparatus such as ballistic impact wear apparatus and pivotal hammer impact wear apparatus. Most mechanical components continue to be functional beyond the zero wear limit, and their usefulness is normally connected with the loss of a specific depth of material. The article reviews the zero impact wear model and some measurable impact wear models. It presents a case study illustrating the impact of wear failure on automotive engine inlet valves and seat inserts.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001626
EISBN: 978-1-62708-235-8
... into place and another type of tank material be considered. Chemical analysis Discoloration Pickling Tubes 17-4 PH UNS S17400 (Other, miscellaneous, or unspecified) failure A type 17-4PH stainless steel tube exhibited brown discoloration after a pickling operation. Although the discoloration...
Abstract
A type 17-4PH stainless steel tube exhibited brown discoloration after a pickling operation. EDS analysis of the extracted substance revealed relatively high levels of iron and chromium, along with lower amounts of aluminum, silicon, sulfur, chlorine, calcium, manganese, and nickel. The iron, chromium, and nickel are likely in the form of dissolution products from the pickling solution. FTIR analysis revealed the presence of polypropylene and poly(ethylene:propylene). The EDS results showed that the discoloration of the tube was associated with oxidation products of the tube material, as well as adherent organic residue. Analysis by FTIR of the residue revealed detectable levels of two polymeric substances, which were later determined to be construction materials of the pickling tank. It was recommended that more frequent cleaning and/or replacement of the pickling solution be put into place and another type of tank material be considered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006793
EISBN: 978-1-62708-295-2
... mass loss, because impact stress was varied by altering the contact area; therefore, the larger-diameter specimens would have lost more mass. Fig. 10 Height change versus number of compound-impact cycles for aluminum 2011-T3 specimens tested against 17-4 PH stainless steel counterfaces...
Abstract
Impact or percussive wear is defined as the wear of a solid surface that is due to percussion, which is a repetitive exposure to dynamic contact by another body. Impact wear, however, has many analogies to the field of erosive wear. The main difference is that, in impact wear situations, the bodies tend to be large and contact in a well-defined location in a controlled way, unlike erosion where the eroding particles are small and interact randomly with the target surface. This article describes some generic features and modes of impact wear of metals, ceramics, and polymers. It discusses the processes involved in testing and modeling of impact wear, and includes two case studies.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001547
EISBN: 978-1-62708-225-9
... Abstract Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress...
Abstract
Life testing of cyclic loaded, miniature extension springs made of 17-7 PH stainless steel wire and AISI 302 Condition B stainless steel wire has shown end hook configuration to be a major source of weakness. To avoid cracking and subsequent fatigue failure, it was found that stress concentration depended on end hook bend sharpness. Also, interference fits are to be avoided in the end hooks of small springs. Additionally, a need for careful consideration of the stress-corrosion properties of candidate materials for spring applications has been demonstrated by stress-corrosion test results for 17-7 PH CH900 and for Custom 455 CH850 stainless steels. Laboratory testing of these two materials in the form of compression springs confirmed the superiority of the 17-7 PH over Custom 455.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001769
EISBN: 978-1-62708-241-9
...Characteristics of cooling water collected from gas turbine power station Table 1 Characteristics of cooling water collected from gas turbine power station S. No. Parameters Water sample 1 Conductivity, μs/cm 2222 2 pH 7.5 3 Total hardness, ppm 220 4 Calcium, ppm...
Abstract
This study examines the role of calcium-precipitating bacteria (CPB) in heat exchanger tube failures. Several types of bacteria, including Serratia sp. (FJ973548), Enterobacter sp. (FJ973549, FJ973550), and Enterococcus sp. (FJ973551), were found in scale collected from heat exchanger tubes taken out of service at a gas turbine power station. The corrosive effect of each type of bacteria on mild steel was investigated using electrochemical (polarization and impedance) techniques, and the biogenic calcium scale formations analyzed by XRD. It was shown that the bacteria contribute directly to the formation of calcium carbonate, a critical factor in the buildup of scale and pitting corrosion on heat exchanger tubes.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006838
EISBN: 978-1-62708-329-4
... 2 ) or surface defects ( Table 3 ). As examples, defects that can form in selective-laser-melted Ti-6Al-4V include porosity, balling, and hot tears ( Fig. 3 , Ref 26 ). Figure 4 shows three examples of lack of fusion in metal-AM-processed 17-4 PH stainless steel at various positions in the build...
Abstract
This article provides an overview of metal additive manufacturing (AM) processes and describes sources of failures in metal AM parts. It focuses on metal AM product failures and potential solutions related to design considerations, metallurgical characteristics, production considerations, and quality assurance. The emphasis is on the design and metallurgical aspects for the two main types of metal AM processes: powder-bed fusion (PBF) and directed-energy deposition (DED). The article also describes the processes involved in binder jet sintering, provides information on the design and fabrication sources of failure, addresses the key factors in production and quality control, and explains failure analysis of AM parts.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... rivet holes and other areas of high stress when boiler water contained caustic soda (NaOH) or the boiler water chemistry was conducive to the formation of caustic soda ( Ref 4 ). In their 1926 paper, “The Cause and Prevention of Embrittlement of Boiler Plate,” researchers at the University of Illinois...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001715
EISBN: 978-1-62708-219-8
... anodic-dissolution was absent in medium-to-high pH solutions (greater than pH 4). The onset of hydrogen assisted cracking was determined to be around −900 mV (SCE), irrespective of bulk pH, and that potential was shown to approximate the transition from net cathodic to anodic behavior for the specimens...
Abstract
Microstructure, corrosion, and fracture morphologies of prestressed steel wires that failed in service on concrete siphons at the Central Arizona Project (CAP) are discussed. The CAP conveys water for municipal, industrial, and agricultural use through a system of canals, tunnels, and siphons from Lake Havasu to just south of Tucson, AZ. Six siphons were made from prestressed concrete pipe units 6.4 m (21 ft) in diam and 7.7 m long, making them the largest circular precast structures ever built. The pipe was manufactured on site and consisted of a 495-mm thick concrete core, wrapped with ASTM A648 steel prestressing wire. All of the CAP failures evaluated were attributed to corrosion. Longitudinal splits reduced the service life of the pipe significantly by facilitating corrosion and introducing sharp cracks into the microstructure of the wire. A few failures were attributed to general corrosion, where the cross section of the wire is reduced until the strength of the wire is exceeded. Most of the failures evaluated were attributed to stress-corrosion cracking.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... or intergranular by adjusting the pH of aqueous solutions in which these alloys are immersed. The crack propagation behavior of SCC systems is often depicted by the crack growth rate as a function of the applied stress intensity, a v - K curve. Figure 4(a) shows a schematic v - K curve, and Fig. 4(b...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
1