Skip Nav Destination
Close Modal
Search Results for
1055
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22 Search Results for
1055
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048102
EISBN: 978-1-62708-224-2
... Abstract A bridge wheel from a 272,160 kg stripper crane fractured in the web near the rim after one year of service. The wheel was forged from 1055 steel, and the tread, hub faces, and hub bore were machined. Beach marks indicative of fatigue at ten locations were revealed by macroscopic...
Abstract
A bridge wheel from a 272,160 kg stripper crane fractured in the web near the rim after one year of service. The wheel was forged from 1055 steel, and the tread, hub faces, and hub bore were machined. Beach marks indicative of fatigue at ten locations were revealed by macroscopic examination of the fracture surfaces. The surface of the web was heavily scaled and decarburized. A gross forging defect extending about 1.8 mm along the fracture surface was disclosed by examination of a micrograph of a section through one of the fatigue origins. Shallower forging defects were visible along the web surface. Fatigue cracking of the wheel was initiated at forging defects in the web. Replacement wheels were machined all over and were magnetic particle inspected to detect any cracks that could act as stress raisers.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048099
EISBN: 978-1-62708-235-8
... Abstract A bridge wheel on a crane, forged from 1055 steel, fractured after one year of service. The wheel fractured in the web between the hub and the rim. A small area containing beach marks that originated in a heavily burned area on the web surface was revealed by visual examination...
Abstract
A bridge wheel on a crane, forged from 1055 steel, fractured after one year of service. The wheel fractured in the web between the hub and the rim. A small area containing beach marks that originated in a heavily burned area on the web surface was revealed by visual examination of the fracture surface. Surface burning to a depth of approximately 0.8 mm was disclosed by metallographic examination of a section taken through the region that contained the beach marks. A forging defect was indicated by the degree of decarburization and oxide dispersion that were visible. The failure was concluded to have been caused by surface burning during the forging operation. As a preventive measure more closely controlled heating practice during forging to eliminate surface burning was recommended. The burnt region was suggested to be removed in case burning occurs.
Image
Published: 01 January 2002
Fig. 18 1055 steel wheel from a stripper crane that failed by fatigue. The wheel foiled after about 1 year of service in the 544,320-kg (600-ton) crane. In the center of the fracture is a fatigue zone showing beach marks that are concentric around the crack origin, which evidently
More
Image
Published: 01 January 2002
Fig. 23 1055 steel crane-bridge wheel that failed by fatigue. (a) Fracture surface of the crane-bridge wheel. Fatigue originated at forging defects. Dark areas are fatigue beach marks. (b) Micrograph of a nital-etched section through the fatigue origin showing a gross forging defect along
More
Image
in Fatigue Fracture of a Forged 1055 Steel Crane-Bridge Wheel
> ASM Failure Analysis Case Histories: Material Handling Equipment
Published: 01 June 2019
Fig. 1 1055 steel crane-bridge wheel that failed by fatigue. (a) Fracture surface of the crane-bridge wheel. Fatigue originated at forging defects. Dark areas are fatigue beach marks. (b) Micrograph of a nital-etched section through the fatigue origin showing a gross forging defect along
More
Image
in Failures of Cranes and Lifting Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 44 Grade 1055 steel crane-bridge wheel that failed by fatigue. (a) Fracture surface of the crane-bridge wheel. Fatigue originated at forging defects. Dark areas are fatigue beach marks. (b) Micrograph of a nital-etched section through the fatigue origin showing a gross forging defect
More
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047694
EISBN: 978-1-62708-219-8
... by the use of sidecutters ( Fig. 1a ). Fig. 1 Wire-end preparation for upset butt welding. The preparation was changed from chisel end (a) to square end (b) to eliminate test failures in welded zinc-coated AISI 1080 or 1055 steel wire. Investigation Tests of wire and weld properties gave...
Abstract
Extra high strength zinc-coated 1080 steel welded wire was wound into seven-wire cable strands for use in aerial cables and guy wires. The wires and cable strands failed tensile, elongation, and wrap tests, with wires fracturing near welds at 2.5 to 3.5% elongation and through the welded joints in wrap tests. The welded wire was annealed by resistance heating. The wire ends had a chisel shape, produced by the use of sidecutters. Tests of the heat treatment temperatures showed that the wire near the weld area exceeded 775 deg C (1425 deg F). Metallographic examination revealed martensite present in the weld area after the heat treatment. The test failures of the AISI 1080 steel wire butt-welded joints were due to martensite produced in cooling from the welding operation that was not tempered adequately in postweld heat treatment, and to poor wire-end preparation for welding that produced poorly formed weld burrs. The postweld heat treatment was standardized on the 760 deg C (1400 deg F) transformation treatment. The chisel shape of the wire ends was abandoned in favor of flat filed ends. The wrap test was improved by adopting a hand-cranked device. Under these conditions, the welded joints withstood the tensile and wrap tests.
Image
Published: 01 January 2002
Fig. 22 Surface burning that initiated fracture in the web of a crane-bridge wheel forged from 1055 steel. Etched with 2% nital. Approximately 35×
More
Image
in Fracture of a 1055 Steel Crane-Bridge Wheel
> ASM Failure Analysis Case Histories: Processing Errors and Defects
Published: 01 June 2019
Fig. 1 Surface burning that initiated fracture in the web of a crane-bridge wheel forged from 1055 steel. Etched with 2% nital. Approximately 35x
More
Image
in Failures of Cranes and Lifting Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 43 Surface burning that initiated fracture in the web of a crane-bridge wheel forged from grade 1055 steel. 2% nital etch. Original magnification: ~35×
More
Image
in Failures of Upset Butt Welds in Hardenable High-Carbon Steel Wire Because of Martensite Formation and Poor Wire-End Preparation
> ASM Failure Analysis Case Histories: Buildings, Bridges, and Infrastructure
Published: 01 June 2019
Fig. 1 Wire-end preparation for upset butt welding. The preparation was changed from chisel end (a) to square end (b) to eliminate test failures in welded zinc-coated AISI 1080 or 1055 steel wire.
More
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045988
EISBN: 978-1-62708-235-8
... (1775 °F), which was within the specified range of 955 to 1010 °C (1750 to 1850 ° F), oil quenched, and tempered at 565 °C (1050 °F) for 2 h. The specimen from the unfailed ductile strap was austenitized at an excessively high temperature of 1055 °C (1935 °F), oil quenched, and also tempered at 565 °C...
Abstract
During installation, a clamp-strap assembly, specified to be type 410 stainless steel-austenitized at 955 to 1010 deg C (1750 to 1850 deg F), oil quenched, and tempered at 565 deg C (1050 deg F) for 2 h to achieve a hardness of 30 to 35 HRC, and used for securing the caging mechanism on a star-tracking telescope, fractured transversely across two rivet holes closest to one edge of the pin retainer in a completely brittle manner. Comparison with a non-failed strap using microscopic examination, spectrographic analysis, and slow-bend tests showed that both fit the 410 stainless steel specs, but hardness and grain size were different. Reheat treatment of full-width specimens showed that coarse grain size (ASTM 2 to 3) was responsible for the brittle fracture, and excessively high temperature during austenitizing caused the large grain size in the failed strap. The fact that the hardness of the strap that failed was lower than the specified hardness of 30 to 35 HRC had no effect on the failure because that of the non-failed strap was even lower. Recommendation was that the strap should be heat treated as specified to maintain the required ductility and grain size.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001372
EISBN: 978-1-62708-215-0
... ksi MPa ksi J ft·lbf 1 873 141 1063 154 10 33 12.8 9.4 287–328 2 1021 148 1055 153 13 36 13.3 9.8 287–328 3 987 143 1028 149 14 37 13.3 9.8 287–328 4 … … … … … … 15.8 11.6 287–328 Condition “H” (ASTM A582) … … … … … … … … 293...
Abstract
A coupling in a line-shaft vertical turbine pump installed in a dam foundation fractured after a very short time. The coupling material was ASTM A582 416 martensitic stainless steel. Visual, macrofractographic, and scanning electron microscopic examination of the coupling showed that the fracture was brittle and was initiated by an intergranular cracking mechanism. The mode of fracture outside the crack initiation zone was transgranular cleavage. No indication of fatigue was found. The failure was attributed to improper heat treatment during manufacture, which resulted in a brittle microstructure susceptible to corrosion. The crack initiated either by stress-corrosion or hydrogen cracking. It was recommended that the couplings in the system be examined for surface cracking and, if present, corrective measures be taken.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001268
EISBN: 978-1-62708-215-0
... treatment Table 3 Tensile properties after heat treatment Leaf spring coupon number Yield strength, 0.2% offset Ultimate tensile Elongation, % Modulus of elasticity, MPa ksi MPa ksi GPa 10 6 psi 6(b) 1055 153 1400 203 28.0 176 25.5 7(b) 1089 158 1385 207...
Abstract
A missile detached from a Navy fighter jet during a routine landing on an aircraft carrier deck because of a faulty missile launcher detent spring. Visual inspection of Inconel 718 detent spring assembly revealed that four of the nine spring leafs comprising the assembly were plastically deformed while two of the deformed leafs did not meet minimal hardness or tensile requirements. Liquid penetrant testing revealed no cracks or other surface discontinuities on the leaf springs. Material sectioned from the soft spring leafs was heat-treated according to specifications in the laboratory. The resultant increase in mechanical properties of the re-heat-treated material indicated that the original heat treatment was not performed correctly. The failure was attributed to improper heat treatment. Recommendations focused on more stringent quality control of the heat-treat operations.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001272
EISBN: 978-1-62708-215-0
... °F). Pertinent Specifications Material: ASTM A446 grade B or F steel sheet, zinc-coated by the hot-dip process, structural quality Design Code: German: Silo code DIN 1055 E and DIN 1055 F. U.S.: Janssen theory Performance of Other Parts in Same or Similar Service The design...
Abstract
A 22 m (72 ft) diameter filled grain storage bin made from a 0.2% carbon steel collapsed at a temperature of −1 to 4 deg C (30 to 40 deg F). Failure analysis indicated that fracture occurred in a two-step process: first downward, by ductile failure of small ligament from a bolt hole near the bottom of the tank to create a crack 25 mm (1 in.) long, and then upward, by brittle fracture through successive 1.2 m (4ft) wide sheets of ASTM A446 material. Site investigation showed that the concrete base pad was not level. Chemical analysis indicated that the material had a high nitrogen content (0.020%). The allowable stress based on yield was estimated using four different design criteria. Correlation among those results was poor. The different criteria indicated that the material was loaded from the maximum allowable to approximately 30% less than allowable. Nevertheless, at this stress level, fracture mechanics indicated that the 25 mm (1 in.) starter crack exceeded or was very near the critical crack length for the material. Additional factors not taken into account in the design equations included cold work from a hole punching operation, thread imprinting in bolt holes, and an additional hoop stress created by forcing an incorrectly formed panel to fit the pad base radius. These factors increased the nominal design stress to a sufficiently large value to cause the critical crack length to be exceeded.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001117
EISBN: 978-1-62708-214-3
... 860 (min) 125 (min) … … … … Q-125 860–1035 125–150 930 (min) 135 (min) … … 27 (min) 20 (min) Measured values Split No. 1 890 129 1075 156 41 30 28 21 Split No. 2 925 134 1055 153 39 29 27 20 Impact Toughness Charpy impact testing was also carried...
Abstract
Several tin plated, low-alloy steel couplings designed to connect sections of 180 mm (7 in.) diam casing for application in a gas well fractured under normal operating conditions. The couplings were purchased to American Petroleum Institute (API) specifications for P-110 material. Chemical analysis and mechanical testing of the failed couplings showed that they had been manufactured to the API specification for Q-125, more stringent specification than P-110, and met all requirements of the application. Fractographic examination showed that the point of initiation was an embrittled region approximately 25 mm (1 in.) from the end of the coupling. The source of the embrittlement was determined to be hydrogen charging during tin plating. Changes in the plating process were recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001721
EISBN: 978-1-62708-225-9
... 2 Mechanical Property and Tempering Requirements of SAE grade 8 and ASTM A574 fasteners Mechanical Property SAE grade 8 (a) ASTM A574 (a) Proof Strength 827 MPa 931 MPa (min) 120,000 psi 135,000 psi Yield Strength 896 MPa 1055 MPa (min) 130,000 psi 153,000 psi...
Abstract
Diagnosis of environmentally induced failures is greatly facilitated by metallographic analysis. As an example, a failure analysis of ASTM A574 material grade bolts is presented. The bolts served as bonnet screws in underground valves and failed due to stress-corrosion cracking. Metallographic methods were used to diagnose and provide solutions for the service failure. Included are photos showing crack propagation morphology and fracture surface appearance.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003563
EISBN: 978-1-62708-180-1
Abstract
A major cause of failure in components subjected to rolling or rolling/sliding contacts is contact fatigue. This article focuses on the rolling contact fatigue (RCF) performance and failure modes of overlay coatings such as those deposited by physical vapor deposition, chemical vapor deposition, and thermal spraying (TS). It provides a background to RCF in bearing steels in order to develop an understanding of failure modes in overlay coatings. The article describes the underpinning failure mechanisms of TiN and diamond-like carbon coatings. It presents an insight into the design considerations of coating-substrate material properties, coating thickness, and coating processes to combat RCF failure in TS coatings.
1