Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-12 of 12
Optical microscopes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001167
EISBN: 978-1-62708-228-0
Abstract
Visual examination, optical and scanning electron microscopy were used to determine the cause of failure in the connector groove of a marine riser coupling. The specified steel was AISI 4142 (0.40 to 0.45% C; 0.75 to 1.00% Mn; 0.20 to 0.35% Si; 0.80 to 1.10% Cr; 0.15 to 0.25% Mo) normalized from 9000C. Microscopic examination revealed the crack's initiation point and subsequent propagation. SEM examination of chemically stripped corrosion showed that corrosion fatigue and stress corrosion might have contributed to the initial slow crack growth. Impact tests revealed a fracture transition temperature in excess of 1000C. The sequence of events leading to failure was detailed. The main recommendation was to quench and temper existing couplings and to use a lower carbon quenched and tempered steel for new couplings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
Abstract
An Incoloy 800H (UNS N08810) transfer line on the outlet of an ethane-cracking furnace failed during decoking of the furnace tubes after nine years in service. A metallographic examination using optical and scanning electron microscopy as well as energy-dispersive x-ray spectroscopy revealed that the failure was due to sulfidation. The source of the sulfur in the furnace effluent was either dimethyl disulfide, injected into the furnace feed to prevent coke formation and carburization of the furnace tubes, or contamination of the feed with sulfur bearing oil.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
Abstract
An oil scavenge pump was found to have failed when a protective shear neck fractured during the start of a jet engine. Visual inspection revealed that the driven gear in one of the bearing compartments was frozen as was the corresponding drive gear. Spacer wear and thermal discoloration (particularly on the driven gear) were also observed. The gears were made from 32Cr-Mo-V13 steel, hardened and nitrided to 750 to 950 HV. Micrographic inspection of the gear teeth revealed microstructural changes that, in context, appear to be the result of friction heating. The spacers consist of Cu alloy (AMS4845) bushings force fit into AA2024-T3 Al alloy spacing elements. It was found that uncontrolled fit interference between the two components had led to Cu alloy overstress. Thermal cycling under operating conditions yielded the material. The dilation was directed inward to the shaft, however, because the bushing had only a few microns of clearance. The effect caused the oil to squeeze out, resulting in metal-to-metal contact, and ultimately failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001583
EISBN: 978-1-62708-217-4
Abstract
The purpose of this investigation was to determine the root cause of the differences noted in the fatigue test data of main rotor spindle assembly retaining rods fabricated from three different vendors, as part of a Second Source evaluation process. ARL performed dimensional verification, accessed overall workmanship, and measured the respective surface roughness of the rods in an effort to identify any discrepancies. Next, mechanical testing was performed, followed by optical and electron microscopy, and chemical analysis. Finally, ARL performed laboratory heat treatments at the required aging temperature and follow-up mechanical testing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046222
EISBN: 978-1-62708-217-4
Abstract
The spindle of a helicopter-rotor blade fractured after 7383 h of flight service. At every overhaul (the spindle that failed was overhauled six times and reworked twice), any spindle that showed wear was reworked by grinding the shank to 0.1 mm (0.004 in.) under the finished diam. The spindle was then shot peened with S170 shot to an Almen intensity of 0.010 to 0.012 A. Following shot peening, the shank was nickel sulfamate plated to 0.05 mm (0.002 in.) over the finished diam, ground to finished size, and cadmium plated. Visual and stereomicroscopic exam showed faint grinding marks and circumferential grooves on the surface near the fillet at the junction of the shank and fork, which should have been peened over and covered with peening dimples. Evidence found supports the conclusions that the spindle failed in fatigue that originated near the junction of the shank and fork. The nonuniformity of the shot-peened effect on the shank and fillet portions of the spindle resulted from incomplete peeing. The fracture was of the low-stress high-cycle type, initiated by stresses well below the gross yield strength and propagated by thousands of load cycles. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047583
EISBN: 978-1-62708-217-4
Abstract
An aircraft fuel-nozzle-support assembly exhibited cracks along the periphery of a fusion weld that attached a support arm to a fairing in a joint that approximated a T-shape in cross section. The base metal was type 321 stainless steel. Examination showed a good-quality weld penetrating to the support arm beneath, but revealed notch configurations at the inner mating surfaces at each edge of the fairing, the result of welding a poor fit-up of the support arm to the fairing. Fractures that originated at the cracks were examined by stereomicroscope and were found to contain fatigue marks that indicated crack propagation from multiple origins at the inner surface of the weld edge. Fatigue cracking was initiated at stress concentrations created by the notches at the inner surfaces between the support arm and the fairing, enhanced by poor fit-up in preparation for welding.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001666
EISBN: 978-1-62708-229-7
Abstract
Stress-corrosion cracking of low-alloy steel turbine discs has emerged as a generic concern in nuclear generating stations. An investigation that made extensive use of field metallographic techniques to examine suspected cracking in such a component is described. The crack position, and its relationship to surface topographic features, were examined and recorded by magnetic rubber and high-resolution dental rubber replicating materials. Corrosion deposits on keyway surfaces and within the crack were collected with acetate foil replicas applied and then stripped from the keyway surfaces. Microstructural details were revealed by the use of field metallographic preparation techniques and replicated by acetate foil for examination with optical and scanning electron microscopes. It was possible by these techniques to establish the cracking mechanism as stress corrosion possibly related to chloride or sulphate ion steam contaminants. Subsequent sectioning and conventional metallography confirmed both the validity of the conclusions and the replication techniques.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
Abstract
A steel pot used as crucible in a magnesium alloy foundry developed a leak that resulted in a fire and caused extensive damage. Hypotheses as to the cause of the leak included a defect in the pot, overuse, overheating, and poor foundry practices. Scanning electron microscopy, transmission electron microscopy, optical microscopy, and x-ray microanalysis in conjunction with dimensional analysis, phase diagrams and thermodynamics considerations were employed to evaluate the various hypotheses. All evidence pointed to an oxide mass in the area where the hole developed, likely introduced during the steelmaking process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001510
EISBN: 978-1-62708-217-4
Abstract
Proper stress analysis during component design is imperative for accurate life and performance prediction. The total stress on a part is comprised of the applied design stress and any residual stress that may exist due to forming or machining operations. Stress-corrosion cracking may be defined as the spontaneous failure of a metal resulting from the combined effects of a corrosive environment and the effective component of tensile stress acting on the structure. However, because of the orientation dependence in aluminum, it is the residual stress occurring in the most susceptible direction that must be considered of primary importance in material selection for design configuration. A Navy UH-1N helicopter main rotor blade grip manufactured from a 2014-T6 aluminum alloy forging failed because of a design flaw that left a high residual tensile stress along the short transverse plane; this in turn provided the necessary condition for stress corrosion to initiate. A complete failure investigation to ascertain the exact cause of the failure was conducted utilizing stereomicroscopic examination, scanning electron microscopy, metallographic inspection and interpretation, energy-dispersive chemical analysis, physical and mechanical evaluation. Stereomicroscopic examination of the opened crack fracture surface revealed one large fan-shaped region that had propagated radially through the thickness of the material from two distinct origin areas on the internal diam of the grip. Higher magnification inspection near the origin area revealed a flat, wood-like appearance. Scanning electron microscopy divulged the presence of substantial mud cracking and intergranular separation on the fracture surface. Metallographic examination revealed intergranular cracking and substantial leaf separation along the elongated grains parallel to the fracture surface. Chemical composition and hardness requirements were found to be as specified. The blade grip failed due to a stress corrosion crack which initiated on the inner diam and propagated in the short transverse direction through the thickness of the component. The high residual tensile stress in the part resulting from the forging and exposed after machining of the inner diam, combined with the presence of moisture, provided the necessary conditions to facilitate crack initiation and propagation.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001530
EISBN: 978-1-62708-225-9
Abstract
This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement. The worn surfaces of samples and the wear debris were examined by light optical microscope, SEM, and energy-dispersive x-ray microanalyzer. It was found that the laboratory pin-on-disk wear data correlated well with the plant experience. It is suggested that the higher lead content ~18%) of the good bearing compared with 7% lead of the failed bearing helped to establish a protective transfer layer on the worn surface. This transfer layer reduced metal-to-metal contact between the bearing and the roller and resulted in a lower wear rate. The lower lead content of the failed bearing does not allow the establishment of a well-protected transfer layer and leads to rapid wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089696
EISBN: 978-1-62708-220-4
Abstract
A failed crosshead of an industrial compressor was examined using optical and SEM. The crosshead was an ASTM A148 grade 105-85 steel casting. On the basis of the observations reported and available background information, it was concluded that the failure began with the initiation of cracks at slag inclusions and sharp fillets in weld-repair areas in the casting. The weld-repair procedures were unsatisfactory. The cracks propagated in a fatigue mode. he casting quality was judged unacceptable because of the presence of excessive shrinkage porosity. It was recommended that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090454
EISBN: 978-1-62708-220-4
Abstract
A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic hydrocarbon-based solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses. The source of the stress was thought to be molded-in residual stresses associated with uneven shrinkage. This was suggested by obvious distortion evident on cutting the vessel. Relatively high specific gravity and the elevated heat of fusion indicated that the material had a high level of crystallinity. In general, increased levels of crystallinity result in higher levels of molded-in stress and the corresponding warpage. The significant reduction in the modulus of the HDPE material, which accompanied the saturation of the resin with the aromatic hydrocarbon-based solvent, substantially decreased the creep resistance of the material and accelerated the failure.