Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25
Phase
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048064
EISBN: 978-1-62708-224-2
Abstract
A 10,890-kg coil hook torch cut from 1040 steel plate failed while lifting a load of 13,600 kg after eight years of service. The normal ironing (wear) marks were exhibited by the inner surface of the hook. It was revealed by visual examination that cracking had originated at the inside radius of the hook. Beach marks (typical of fatigue fracture) were found extending over approximately 20% of the fracture surface. Numerous cracks were revealed by macroscopic examination of the torch-cut surfaces. It was revealed by macrograph of an etched specimen that the cracks had initiated in a hardened martensitic zone at the torch-cut surface and had extended up to the coarse pearlite structure beneath the martensitic zone. The fatigue fracture was concluded to have initiated in the brittle martensitic surface while failure was contributed by the 25% overload. As a corrective measure, the coil hooks were flame cut from ASTM A242 fine-grain steel plate, ground to remove the material damaged by flame cutting and stress relieved at 620 deg C.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048031
EISBN: 978-1-62708-224-2
Abstract
The 16 mm diam 6 x 37 fiber-core improved plow steel wire rope on a scrapyard crane failed after two weeks of service under normal loading conditions. This type of rope was made of 0.71 to 0.75% carbon steel wires and a tensile strength of 1696 to 1917 MPa. The rope broke when it was attached to a chain for pulling jammed scrap from the baler. The rope was heavily abraded and several of the individual wires were broken. a uniform cold-drawn microstructure, with patches of untempered martensite in regions of severe abrasion and crown wear was revealed by metallographic examination. As a result of abrasion, a hard layer of martensite was formed on the wire. The wire was made susceptible to fatigue cracking, while bending around the sheave, by this brittle surface layer. The carbon content and tensile strength of the wire was found lower than specifications. As a corrective measure, this wire rope was substituted by the more abrasion resistant 6 x 19 rope.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046252
EISBN: 978-1-62708-229-7
Abstract
A type 321 stainless steel bellows expansion joint on a 17-cm (6 in.) OD inlet line (347 stainless) in a gas-turbine test facility cracked during operation. The line carried high-purity nitrogen gas at 1034 kPa (150 psi) with a flow rate of 5.4 to 8.2 kg/s (12 to 18 lb/s). Cracking occurred in welded joints and in unwelded portions of the bellows. The bellows were made by forming the convolution halves from stainless steel sheet, then welding the convolutions together. Evidence from visual examination, liquid penetrant inspection chemical analysis, hardness tests, and metallographic examination of sections etched with Vilella's reagent supports the conclusions that failure of the bellows occurred by intergranular fatigue cracking. Secondary degrading effects on the piping existed as well. Recommendations included the acceptability of Type 321 stainless steel (provided open-cycle testing does not result in surface oxidation and crevices) Although type 347 stainless steel would be better, and Inconel 600 would be an even better choice. Welds would also need modified processing for reheating and annealing. Prevention of oil leakage into the system would minimize carburization of the piping and bellows.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001571
EISBN: 978-1-62708-229-7
Abstract
The accident at Three Mile Island Unit No. 2 on 28 March 1979 was the worst nuclear accident in US history. By Jan 1990, it was possible to electrochemically machine coupons from the lower head using a specially designed tool. The specimens contained the ER308L stainless steel cladding and the A533 Grade B plate material to a depth of about mid-wall. The microstructures of these specimens were compared to that of specimens cut from the Midland, Michigan reactor vessel, made from the same grade and thickness but never placed in service. These specimens were subjected to known thermal treatments between 800 and 1100 deg C for periods of 1 to 100 min. Microstructural parameters in the control specimens and in those from TMI-2 were quantified. Selective etchants were used to better discriminate desired microstructural features, particularly in the cladding. This report is a progress report on the quantification of changes in both the degree of carbide precipitation and delta ferrite content and shape in the cladding as a function of temperature and time to refine the estimates of the maximum temperatures experienced.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0047694
EISBN: 978-1-62708-219-8
Abstract
Extra high strength zinc-coated 1080 steel welded wire was wound into seven-wire cable strands for use in aerial cables and guy wires. The wires and cable strands failed tensile, elongation, and wrap tests, with wires fracturing near welds at 2.5 to 3.5% elongation and through the welded joints in wrap tests. The welded wire was annealed by resistance heating. The wire ends had a chisel shape, produced by the use of sidecutters. Tests of the heat treatment temperatures showed that the wire near the weld area exceeded 775 deg C (1425 deg F). Metallographic examination revealed martensite present in the weld area after the heat treatment. The test failures of the AISI 1080 steel wire butt-welded joints were due to martensite produced in cooling from the welding operation that was not tempered adequately in postweld heat treatment, and to poor wire-end preparation for welding that produced poorly formed weld burrs. The postweld heat treatment was standardized on the 760 deg C (1400 deg F) transformation treatment. The chisel shape of the wire ends was abandoned in favor of flat filed ends. The wrap test was improved by adopting a hand-cranked device. Under these conditions, the welded joints withstood the tensile and wrap tests.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c9001646
EISBN: 978-1-62708-219-8
Abstract
Locked coil wire ropes, by virtue of their unique design and construction, have specialized applications in aerial ropeways, mine hoist installations, suspension bridge cables, and so forth. In such specialty ropes, the outer layer is constructed of Z-profile wires that provide not only effective interlocking but also a continuous working surface for withstanding in-service wear. The compact construction and fill-factor of locked coil wire ropes make them relatively impervious to the ingress of moisture and render them less vulnerable to corrosion. However, such ropes are comparatively more rigid than conventional wire ropes with fiber cores and therefore are more susceptible to the adverse effects of bending stresses. The reasons for premature in-service wire rope failures are rather complex but frequently may be attributed to inappropriate wire quality and/or abusive operating environment. In either case, a systematic investigation to diagnose precisely the genesis of failure is desirable. This article provides a microstructural insight into the causes of wire breakages on the outer layer of a 40 mm diam locked coil wire rope during service. The study reveals that the breakages of Z-profile wires on the outer rope layer were abrasion induced and accentuated by arrays of fine transverse cracks that developed on a surface martensite layer.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047545
EISBN: 978-1-62708-236-5
Abstract
The AISI 1080 steel crankshaft of a large-capacity double-action stamping press broke in service and was repair welded. Shortly after the crankshaft was returned to service, the repair weld fractured. The repair-weld fracture was examined ultrasonically which revealed many internal reflectors, indicating the presence of slag inclusions and porosity. A low-carbon steel flux-cored filler metal was used in repair welding the crankshaft, without any preweld or postweld heating. This resulted in the formation of martensite in the HAZ. The repair weld failed by brittle fracture, which was attributed to the combination of weld porosity, many slag inclusions and the formation of brittle martensite in the HAZ. A new repair weld was made using an E312 stainless steel electrode, which provides a weld deposit that contains considerable ferrite to prevent hot cracking. Before welding, the crankshaft was preheated to a temperature above which martensite would form. After completion, the weld was covered with an asbestos blanket, and heating was continued for 24 h. During the next 24 h, the temperature was slowly lowered. The result was a crack-free weld.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047343
EISBN: 978-1-62708-236-5
Abstract
An experimental high-temperature rotary valve was found stuck due to growth and distortion after approximately 100 h. Gas temperatures were suspected to have been high due to overfueled conditions. Both the rotor and housing in which it was stuck were annealed ferritic ductile iron similar to ASTM A395. Visual examination of the rotor revealed unusually heavy oxidation and thermal fatigue cracking along the edge of the gas passage. Material properties, including microstructure, composition, and hardness, of both the rotor and housing were evaluated to determine the cause of failure. The microstructure of the rotor was examined in three regions. The shaft material, the heavy section next to the gas passage and the thin edge of the rotor adjacent to the gas passage. The excessive gas temperatures were responsible for the expansion and distortion that prevented rotation of the rotor. Actual operating temperatures exceeded those intended for this application. The presence of transformation products in the brake-rotor edge indicated that the lower critical temperature had been exceeded during operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001439
EISBN: 978-1-62708-235-8
Abstract
Persistent leakage was experienced from copper tube heaters which formed part of dairy equipment. Metallurgical examination of the brazed joints showed them to have suffered a preferential corrosion attack. This resulted in the phosphide phase of the brazing alloy being corroded away, leaving a weak, porous residual structure. The brazing alloy was of type CP 1 as covered by BS 1845. Header and tube materials were basically copper-nickel alloys for which the use of a phosphorus bearing brazing alloy is not recommended owing to the possibility of forming the brittle intermetallic compound, nickel phosphide. The use of a brazing alloy containing phosphorus was unsuitable on two counts and a quaternary alloy containing silver, copper, cadmium and zinc, such as those in group AG1 or AG2 of BS 1845 would be more suitable. However, because corrosive problems experienced in these units indicated severe service conditions, a proprietary alloy similar to AG1, but containing 3% nickel, was recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0092148
EISBN: 978-1-62708-235-8
Abstract
Occasional failures were experienced in spool-type valves used in a hydraulic system. When a valve would fail, the close-fitting rotary valve would seize, causing loss of flow control of the hydraulic oil. The rotating spool in the valve was made of 8620 steel and was gas carburized. The cylinder in which the spool fitted was made of 1117 steel, also gas carburized. Investigation (visual inspection, low magnification images, 400x images, metallographic exam, and hardness testing) supported the conclusion that momentary sliding contact between the spool and the cylinder wall caused unstable retained austenite in the failed cylinder to transform to martensite. The increase in volume resulted in sufficient size distortion to cause interference between the cylinder and the spool, seizing, and loss of flow control. The failed parts had been carburized in a process in which the carbon potential was too high, which resulted in a microstructure having excessive retained austenite after heat treatment. Recommendations included modifying the composition of the carburizing atmosphere to yield carburized parts that did not retain significant amounts of austenite when they were heat treated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048787
EISBN: 978-1-62708-235-8
Abstract
Leakage from the top of a fire-extinguisher case, made of 1541 steel tubing and closed by spinning was observed during testing. Three small folds were observed on the surface by visual examination and one was sectioned. A very fine transverse fissure through the section was revealed. Streaks of ferrite were observed by metallographic examination. It was concluded that cracking of the top of the fire-extinguisher case was the result of ferrite streaks formed due to metal overheating. The temperature of the metal was recommended to be controlled so that the spinning operation is done at a lower temperature to avoid formation of ferrite streaks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047566
EISBN: 978-1-62708-235-8
Abstract
Handles welded to the top cover plate of a chemical-plant downcomer broke at the welds when the handles were used to lift the cover. The handles were fabricated of low-carbon steel rod; the cover was of type 502 stainless steel plate. The attachment welds were made with type 347 stainless steel filler metal to form a fillet between the handle and the cover. The structure was found to contain a zone of brittle martensite in the portion of the weld adjacent to the low-carbon steel handle; fracture had occurred in this zone. The brittle martensite layer in the weld was the result of using too large a welding rod and too much heat input, melting of the low-carbon steel handle, which diluted the austenitic stainless steel filler metal and formed martensitic steel in the weld zone. Because it was impractical to preheat and postheat the type 502 stainless steel cover plate, the low-carbon steel handle was welded to low-carbon steel plate, using low-carbon steel electrodes. This plate was then welded to the type 502 stainless steel plate with type 310 stainless steel electrodes. This design produced a large weld section over which the load was distributed.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001603
EISBN: 978-1-62708-228-0
Abstract
The genesis of failure of 6.1 mm thick electric resistance welded API 5L X-46 pipes during pretesting at a pressure equivalent to 90% of specified minimum yield strength was investigated. Cracks were found to initiate on the outer surface of the pipes in the fusion zone and propagate along the through-thickness direction. The presence of extensive decarburization and formation of a soft ferrite band within the fusion zone may have contributed to the nucleation of the cracks. Crack propagation was aided by the presence of exogenous inclusions entrapped within the fusion zone. Analysis of these inclusions confirmed the presence of Fe, Si, Ca, and O, indicating slag entrapment to be the most probable culprit.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0046079
EISBN: 978-1-62708-233-4
Abstract
After only a short time in service, oil-fired orchard heaters made of galvanized low-carbon steel pipe, 0.5 mm (0.020 in.) in thickness, became sensitive to impact, particularly during handling and storage. Most failures occurred in an area of the heater shell that normally reached the highest temperature in service. A 400x etched micrograph showed a brittle and somewhat porous metallic layer about 0.025 mm (0.001 in.) thick on both surfaces of the sheet. Next to this was an apparently single-phase region nearly 0.05 mm (0.002 in.) in thickness. The examination supported the conclusion that prolonged heating of the galvanized steel heater shells caused the zinc-rich surface to become alloyed with iron and reduce the number of layers. Also, heating caused zinc to diffuse along grain boundaries toward the center of the sheet. Zinc in the grain boundaries reacted with iron to form the brittle intergranular phase, resulting in failure by brittle fracture at low impact loads during handling and storage. Recommendation included manufacture of the pipe with aluminized instead of galvanized steel sheet for the combustion chamber.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c0046956
EISBN: 978-1-62708-232-7
Abstract
A brazing-furnace muffle 34 cm (13 in.) wide, 26 cm (10 in.) high, and 198 cm (78 in.) long, was fabricated from nickel-base high-temperature alloy sheet and installed in a gas-fired furnace used for copper brazing of various assemblies. The operating temperature of the muffle was reported to have been closely controlled at the normal temperature of 1175 deg C (2150 deg F); a hydrogen atmosphere was used during brazing. After about five months of continuous operation, four or five holes developed on the floor of the muffle, and the muffle was removed from service. Analysis (visual inspection, x-ray spectrometry, and metallographic examination) supported the conclusion that the muffle failed by localized overheating in some areas to temperatures exceeding 1260 deg C (2300 deg F). The copper found near the holes had dripped to the floor from assemblies during brazing. The copper diffused into the nickel-base alloy and formed a grain-boundary phase that was molten at the operating temperature. The presence of this phase caused localized liquefaction and weakened the alloy sufficiently to allow formation of the holes. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001224
EISBN: 978-1-62708-232-7
Abstract
A recuperator for blast heating of a cupola furnace became unserviceable because of the brittle fracture of several finned tubes made of heat resistant cast steel containing 1.4C, 2.3Si and 28Cr. The service temperature was reported as 850 deg C. This led to the suspicion that the fracturing had something to do with the precipitation of sigma phase. Metallographic examination showed that the multiaxial stresses caused by sigma phase formation and the related embrittlement was the cause for the fracture of the recuperator. A steel of lower chromium content with no or little tendency for sigma phase formation would have had adequate corrosion resistance at the relatively low service temperature.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001645
EISBN: 978-1-62708-232-7
Abstract
An extensive metallurgical investigation was carried out on samples of a failed roller bearing from the support and tilting system of a basic oxygen furnace converter used in the steel melting shop of an integrated steel plant. The converter bearing was fabricated from low-carbon, carburizing grade steel and had failed in service within a year of fitting to a repaired shaft. Microscopic observations of both the broken roller and inner-race samples revealed subsurface cracking and preponderance of brittle oxide and other macroinclusions. Electron probe microanalysis studies confirmed that the brittle oxides that formed stringers were alumina, and the other macroinclusions were complex silicates. Both the alumina and silicate inclusions were deleterious to contact-fatigue properties. Microstructurally, the carburized regions of the broken roller and of inner-race samples contained high-carbon tempered martensite. Microhardness measurements revealed that. Although the core hardness of the roller and the inner-race samples were similar, the surface hardness of the roller was approximately 8.5 HRC units harder than that of the inner-race. SEM observations of the roller fracture surface revealed striations indicative of fatigue, and EDS analyses corroborated a high incidence of silicate inclusions at crack sites. The study suggests that the failure of the bearing occurred because the hardness difference between the roller bearing and the inner-race surfaces resulted in wear of the inner-race. The wear led to shaft misalignment and play during service. The misalignment, coupled with the presence of inclusions, caused fatigue failure of the roller bearing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001225
EISBN: 978-1-62708-232-7
Abstract
Three radially-cracked disks that circulated the protective gases in a bell-type annealing furnace were examined. During service they had been heated in cycles of 48 h to 720 deg C for 3 h each time, then were kept at temperature for 15 h followed by cooling to 40 deg C in 30 h, while rotating at 1750 rpm. Two disks were cracked at the inner face of the sheet metal rim while the rim of the third was completely cracked through. An analysis of the sheet metal rim of one of the disks showed the following composition: 0.06C, 1.98Si, 25.8Cr, and 35.8Ni. A steel of such high chromium content was susceptible to s-phase formation when annealed under 800 deg C. The material selected was therefore unsuitable for the stress to be anticipated. In view of the required oxidation resistance, a chromium-silicon or chromium-aluminum steel with 6 or 13% Cr would have been adequate. If the high temperature strength of these steels proved inadequate, an alloy lower in chromium would have been preferable.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091402
EISBN: 978-1-62708-234-1
Abstract
Leakage was detected in a malleable iron elbow (ASTM A 47, grade 35018) after only three months in service. Life expectancy for the elbow was 12 to 24 months. The piping alternately supplied steam and cooling water to a tire-curing press. The supply line and elbow were subjected to 14 heating and cooling cycles per hour for at least 16 h/day, or a minimum of 224 cycles/day. Steam and water pressure were 1035 kPa (150 psi) and 895 kPa (130 psi) respectively, and water-flow rate was estimated to be 1325 L/min (350 gal/min) based on pump capacity. Water-inlet temperature was 10 to 15 deg C (50 to 60 deg F) and outlet temperature was 50 to 60 deg C (120 to 140 deg F). The pH of the water was 6.9. Investigation (visual inspection, chemical analysis, and 67x nital etched micrographs) supported the conclusion that the elbows had been given the usual annealing and normalizing treatment for ferritizing malleable iron. This resulted in lower resistance to erosion and corrosion than pearlitic malleable iron. Recommendations included replacing the elbows with heat-treated fittings with a pearlitic malleable microstructure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.machtools.c0047307
EISBN: 978-1-62708-223-5
Abstract
An impact breaker bar showed signs of rapid wear. The nominal composition of this chromium alloy cast iron was Fe-2.75C-0.75Mn-0.5Si-0.5Ni-19.5Cr-1.1Mo. The measured hardness of this bar was 450 to 500 HRB. The desired hardness for this material after air hardening is 600 to 650 HRB. The microstructure consisted of eutectic chromium carbides (Cr7C3) in a matrix of retained austenite and martensite intermingled with secondary carbides. Analysis (visual inspection and 500x view of sections etched with Marble's reagent) supported the conclusion that the low hardness resulted from an excessive amount of retained austenite. This caused reduced wear resistance and thus rapid wear in service. Recommendations included avoiding an excessive austenitizing temperature and excessive cooling rates from the austenitizing temperature and controlling the chemical composition to avoid excessive hardenability for the section size involved.
1