Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-4 of 4
Glass-fiber reinforced composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
Abstract
This article provides an overview of the physics and math associated with moisture-related failures in plastic components. It develops key equations, showing how they are used to analyze the causes and effects of water uptake, diffusion, and moisture concentration in polymeric materials and resins. It explains how absorbed moisture affects a wide range of properties, including glass transition temperature, flexural and shear modulus,creep, stress relaxation, swelling, tensile and yield strength, and fatigue cracking. It provides relevant data on common polymers, resins, and fiber-resin composites.
Book Chapter
Cracking of Poly(butylene terephthalate) Automotive Sleeves
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090442
EISBN: 978-1-62708-218-1
Abstract
A number of plastic sleeves used in an automotive application cracked after assembly but prior to installation into the mating components. The sleeves were specified to be injection molded from a 20% glass-fiber-reinforced polybutylene terephthalate (PBT) resin. After molding, electronic components are inserted into the sleeves, and the assembly is filled with a potting compound. Investigation of the cracked parts and some reference parts available for testing included visual inspection, micro-FTIR in the ATR mode, and analysis using DSC. Subtle spectrum differences suggested degradation of the failed part material, and the thermograms supported this. The conclusion was that the failed sleeves had cracked due to embrittlement associated with severe degradation and the corresponding molecular weight reduction. The reduction in molecular weight significantly reduced the mechanical properties of the sleeves. The cause of the degradation was not evident, but the likely source appears to be the molding operation and exposure to elevated temperature for an extended period of time.
Book Chapter
Embrittlement of Nylon Couplings
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0090436
EISBN: 978-1-62708-233-4
Abstract
Molded plastic couplings used in an industrial application exhibited abnormally brittle properties, as compared to previously produced components. The couplings were specified to be molded from a custom-compounded glass-filled nylon 6/12 resin. An inspection of the molding resin used to produce the discrepant parts revealed that the pellets were of two general types, neither of which matched the pellets from a retained resin lot. Investigation included visual inspection, micro-FTIR in the ATR mode, and analysis using DSC. The thermograms supported the conclusion that the brittle couplings contained a significant level of contamination, polypropylene and nylon 6/6. The source of the polypropylene was likely the purging compound used to clean the compounding extruder. The origin of the nylon 6/6 resin was unknown but may represent a previously compounded resin.
Book Chapter
Failure of a Nylon Filtration Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0090460
EISBN: 978-1-62708-234-1
Abstract
A component of a water filtration unit failed while being used in service for approximately eight months. The filter system had been installed in a commercial laboratory, where it was stated to have been used exclusively in conjunction with deionized water. The failed part had been injection molded from a 30% glass-fiber and mineral-reinforced nylon 12 resin. Investigation, including visual inspection, 118x SEM images, 9x micrographs, energy-dispersive x-ray spectroscopy, micro-FTIR in the ATR mode, and TGA, supported the conclusion that the filter component failed as a result of molecular degradation caused by the service conditions. Specifically, the part material had undergone severe chemical attack, including oxidation and hydrolysis, through contact with silver chloride. The source of the silver chloride was not established, but one potential source was photographic silver recovery.