Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 27
Measuring and testing instruments
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047590
EISBN: 978-1-62708-217-4
Abstract
A weld in a fuel-line tube broke after 159 h of engine testing. The 6.4-mm (0.25-in.) OD x 0.7-mm (0.028-in.) wall thickness tube and the end adapters were all of type 347 stainless steel. The butt joints between tube and end adapters were made by automated gas tungsten arc (orbital arc) welding. It was found that the tube had failed in the HAZ. Examination of a plastic replica of the fracture surface in a transmission electron microscope established that the crack origin was at the outer surface of the tube. The crack growth was by fatigue; closely spaced fatigue striations were found near the origin, and more widely spaced striations near the inner surface. The quality of the weld and the chemical composition of the tube both conformed to the specifications. However, the fuel-line assembly had vibrated excessively in service. The fuel-line fracture was caused by fatigue induced by severe vibration in service. Additional tube clamps were provided to damp the critical vibrational stresses. No further fuel-line fractures were encountered.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001575
EISBN: 978-1-62708-217-4
Abstract
An oil scavenge pump was found to have failed when a protective shear neck fractured during the start of a jet engine. Visual inspection revealed that the driven gear in one of the bearing compartments was frozen as was the corresponding drive gear. Spacer wear and thermal discoloration (particularly on the driven gear) were also observed. The gears were made from 32Cr-Mo-V13 steel, hardened and nitrided to 750 to 950 HV. Micrographic inspection of the gear teeth revealed microstructural changes that, in context, appear to be the result of friction heating. The spacers consist of Cu alloy (AMS4845) bushings force fit into AA2024-T3 Al alloy spacing elements. It was found that uncontrolled fit interference between the two components had led to Cu alloy overstress. Thermal cycling under operating conditions yielded the material. The dilation was directed inward to the shaft, however, because the bushing had only a few microns of clearance. The effect caused the oil to squeeze out, resulting in metal-to-metal contact, and ultimately failure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047076
EISBN: 978-1-62708-217-4
Abstract
Two cracks were discovered in a deck plate of an aircraft during overhaul and repair after 659 h of service. The cracks were on opposite sides of the deck plate in the flange joggles. The plate had been formed from 7178-T6 aluminum alloy sheet. Analysis (visual inspection, 0.2x/2x/2.3x electron microscope fractographs, hardness testing, and electrical conductivity testing) supported the conclusions that the failure was caused by fatigue cracks originating on the inside curved surface of the flanges. The cracks had initiated in surface defects caused by either corrosion pitting or forming notches, acting in combination with lateral forces evidenced by the moderate distortion of the fastener holes. Recommendations included eliminating the surface defects by revised cleaning and/or forming procedures. Revised design and installation should also alleviate the lateral forces.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001583
EISBN: 978-1-62708-217-4
Abstract
The purpose of this investigation was to determine the root cause of the differences noted in the fatigue test data of main rotor spindle assembly retaining rods fabricated from three different vendors, as part of a Second Source evaluation process. ARL performed dimensional verification, accessed overall workmanship, and measured the respective surface roughness of the rods in an effort to identify any discrepancies. Next, mechanical testing was performed, followed by optical and electron microscopy, and chemical analysis. Finally, ARL performed laboratory heat treatments at the required aging temperature and follow-up mechanical testing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006406
EISBN: 978-1-62708-217-4
Abstract
A crack was found in an aircraft main wing spar flange fabricated from 7079-T6 aluminum alloy during a routine nondestructive x-ray inspection after the craft had logged 300 h. Scanning electron microscopy (SEM) revealed an intergranular fracture pattern indicative of stress-corrosion cracking (SCC) and fatigue striations near the crack origin. Visual examination of the crack edge revealed that the installation of the fasteners produced a fit up stress. Further inspection of the opened fracture showed that the crack had been present for some time because a heavy buildup of corrosion products was seen on the fractured surface. Metallographic examination of the flange in the area of fracture initiation showed the presence of end grain exposure, which would promote SCC. Electron optical examination of the fracture clearly showed the flange was cracking by a mixed mode of stress corrosion and fatigue. The cracking was accelerated because of an inadvertent fit up stress during installation. The age of the crack could not be established. However, a reevaluation of prior x-ray inspections in this area would result in some close estimate of the age of the crack. End grain exposure further promoted SCC.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046222
EISBN: 978-1-62708-217-4
Abstract
The spindle of a helicopter-rotor blade fractured after 7383 h of flight service. At every overhaul (the spindle that failed was overhauled six times and reworked twice), any spindle that showed wear was reworked by grinding the shank to 0.1 mm (0.004 in.) under the finished diam. The spindle was then shot peened with S170 shot to an Almen intensity of 0.010 to 0.012 A. Following shot peening, the shank was nickel sulfamate plated to 0.05 mm (0.002 in.) over the finished diam, ground to finished size, and cadmium plated. Visual and stereomicroscopic exam showed faint grinding marks and circumferential grooves on the surface near the fillet at the junction of the shank and fork, which should have been peened over and covered with peening dimples. Evidence found supports the conclusions that the spindle failed in fatigue that originated near the junction of the shank and fork. The nonuniformity of the shot-peened effect on the shank and fillet portions of the spindle resulted from incomplete peeing. The fracture was of the low-stress high-cycle type, initiated by stresses well below the gross yield strength and propagated by thousands of load cycles. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047583
EISBN: 978-1-62708-217-4
Abstract
An aircraft fuel-nozzle-support assembly exhibited cracks along the periphery of a fusion weld that attached a support arm to a fairing in a joint that approximated a T-shape in cross section. The base metal was type 321 stainless steel. Examination showed a good-quality weld penetrating to the support arm beneath, but revealed notch configurations at the inner mating surfaces at each edge of the fairing, the result of welding a poor fit-up of the support arm to the fairing. Fractures that originated at the cracks were examined by stereomicroscope and were found to contain fatigue marks that indicated crack propagation from multiple origins at the inner surface of the weld edge. Fatigue cracking was initiated at stress concentrations created by the notches at the inner surfaces between the support arm and the fairing, enhanced by poor fit-up in preparation for welding.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0090181
EISBN: 978-1-62708-229-7
Abstract
Cracking in gas turbine blades was found to initiate from a mechanism of low-cycle fatigue (LCF). LCF is induced during thermal loading cycles in gas turbines. However, metallography of two cracked blades revealed a change in microstructure at as-cast surfaces for depths up to 0.41 mm (0.016 in.). Evaluation by SEM confirmed the difference in structure was associated with a lack of formation of coarse gamma prime structure in the matrix. Microhardness and miniature tensile test results indicated lower strength consistent with the absence of the coarse gamma prime constituent. The blade vendor found that the lot of hot isostatically pressed (HIP) blade castings had been exposed to an improper atmosphere during the HIP process, resulting in the weakened structure. Because subsequent failures were found in blades that did not come from the suspect HIP lot, the scope of the problem was considered generic, and the conclusion was that the primary failure mechanism was LCF. Material imperfections were a secondary deficiency that had the effect of causing the blades from the bad HIP lot to crack first.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001676
EISBN: 978-1-62708-229-7
Abstract
The self-powered flux detectors used in some nuclear reactors are Pt or V-cored co-axial cables with MgO as an insulator and Inconel 600 as the outer sheath material. The detectors are designed to operate in a He atmosphere; to maximize the conduction of heat (generated from the interaction with gamma radiation) and to prevent corrosion. A number of failures have occurred over the years because of a loss of the He cover gas in the assembly. This has resulted in either acid attack on the Inconel 600 sheath in a wet environment or gaseous corrosion in a dry environment. In the latter case, nitriding and embrittlement occurred at temperatures as low as 300 to 400 deg C (determined from an examination of the oxidation of the Zircaloy-2 carrier rod on which the detectors were mounted). Recent results are described and discussed in terms of the oxidation and nitriding kinetics of Zircaloy-2 and Inconel 600, respectively.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001666
EISBN: 978-1-62708-229-7
Abstract
Stress-corrosion cracking of low-alloy steel turbine discs has emerged as a generic concern in nuclear generating stations. An investigation that made extensive use of field metallographic techniques to examine suspected cracking in such a component is described. The crack position, and its relationship to surface topographic features, were examined and recorded by magnetic rubber and high-resolution dental rubber replicating materials. Corrosion deposits on keyway surfaces and within the crack were collected with acetate foil replicas applied and then stripped from the keyway surfaces. Microstructural details were revealed by the use of field metallographic preparation techniques and replicated by acetate foil for examination with optical and scanning electron microscopes. It was possible by these techniques to establish the cracking mechanism as stress corrosion possibly related to chloride or sulphate ion steam contaminants. Subsequent sectioning and conventional metallography confirmed both the validity of the conclusions and the replication techniques.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001167
EISBN: 978-1-62708-228-0
Abstract
Visual examination, optical and scanning electron microscopy were used to determine the cause of failure in the connector groove of a marine riser coupling. The specified steel was AISI 4142 (0.40 to 0.45% C; 0.75 to 1.00% Mn; 0.20 to 0.35% Si; 0.80 to 1.10% Cr; 0.15 to 0.25% Mo) normalized from 9000C. Microscopic examination revealed the crack's initiation point and subsequent propagation. SEM examination of chemically stripped corrosion showed that corrosion fatigue and stress corrosion might have contributed to the initial slow crack growth. Impact tests revealed a fracture transition temperature in excess of 1000C. The sequence of events leading to failure was detailed. The main recommendation was to quench and temper existing couplings and to use a lower carbon quenched and tempered steel for new couplings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
Abstract
An Incoloy 800H (UNS N08810) transfer line on the outlet of an ethane-cracking furnace failed during decoking of the furnace tubes after nine years in service. A metallographic examination using optical and scanning electron microscopy as well as energy-dispersive x-ray spectroscopy revealed that the failure was due to sulfidation. The source of the sulfur in the furnace effluent was either dimethyl disulfide, injected into the furnace feed to prevent coke formation and carburization of the furnace tubes, or contamination of the feed with sulfur bearing oil.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047753
EISBN: 978-1-62708-235-8
Abstract
A pressure probe assembly comprised of type 347 stainless steel housing, brazed with AMS 4772D filler metal to the pressure probe, failed due to detachment of a rectangular segment from the housing. The presence of a large brazing metal devoid region in the pressure probe-housing joint was revealed by visual examination. Fatigue marks, emanating from multiple crack origins on the inside surface of the housing at the brazed joint were revealed by further study of the fracture. A poor metallurgical bond was confirmed by the presence of large irregular voids, flux trapped braze metal and separation between braze and housing.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.steel.c9001490
EISBN: 978-1-62708-232-7
Abstract
A steel pot used as crucible in a magnesium alloy foundry developed a leak that resulted in a fire and caused extensive damage. Hypotheses as to the cause of the leak included a defect in the pot, overuse, overheating, and poor foundry practices. Scanning electron microscopy, transmission electron microscopy, optical microscopy, and x-ray microanalysis in conjunction with dimensional analysis, phase diagrams and thermodynamics considerations were employed to evaluate the various hypotheses. All evidence pointed to an oxide mass in the area where the hole developed, likely introduced during the steelmaking process.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047968
EISBN: 978-1-62708-225-9
Abstract
The radial-contact ball bearings (type 440C stainless steel and hardened) supporting a computer microdrum were removed for examination as they became noisy. Two sizes of bearings were used for the microdrum and a spring washer that applied a 50 lb axial load on the smaller bearing was installed in contact with the inner ring for accurate positioning of the microdrum. The particles contained in residue achieved after cleaning of the grease on bearings with a petroleum solvent were attracted by a magnet and detected under a SEM (SEM) to be flaked off particles from the outer raceway surface. Smearing, true-brinelling marks, and evidence of flaking caused by the shifting of the contact area (toward one side) under axial load, was revealed by SEM investigation of one side of the outer-ring raceway. The true-brinelling marks on the raceways were found to be caused by excessive loading when the bearing was not rotating or during installation. It was concluded that the bearings had failed in rolling-contact fatigue. The noise was eliminated and the preload was reduced to 30 lb by using a different spring washer as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001530
EISBN: 978-1-62708-225-9
Abstract
This paper describes an investigation on the failure of a large leaded bronze bearing that supports a nine-ton roller of a plastic calendering machine. At the end of the normal service life of a good bearing, which lasted for seven years, a new bearing was installed. However the new one failed catastrophically within a few days, generating a huge amount of metallic wear debris and causing pitting on the surface of the cast iron roller. Following the failure, samples were collected from both good and failed bearings. The samples were analyzed chemically and their microstructures examined. Both samples were subjected to accelerated wear tests in a laboratory type pin-on-disk apparatus. During the tests, the bearing materials acted as pins, which were pressed against a rotating cast iron disk. The wear behaviors of both bearing materials were studied using weight loss measurement. The worn surfaces of samples and the wear debris were examined by light optical microscope, SEM, and energy-dispersive x-ray microanalyzer. It was found that the laboratory pin-on-disk wear data correlated well with the plant experience. It is suggested that the higher lead content ~18%) of the good bearing compared with 7% lead of the failed bearing helped to establish a protective transfer layer on the worn surface. This transfer layer reduced metal-to-metal contact between the bearing and the roller and resulted in a lower wear rate. The lower lead content of the failed bearing does not allow the establishment of a well-protected transfer layer and leads to rapid wear.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089696
EISBN: 978-1-62708-220-4
Abstract
A failed crosshead of an industrial compressor was examined using optical and SEM. The crosshead was an ASTM A148 grade 105-85 steel casting. On the basis of the observations reported and available background information, it was concluded that the failure began with the initiation of cracks at slag inclusions and sharp fillets in weld-repair areas in the casting. The weld-repair procedures were unsatisfactory. The cracks propagated in a fatigue mode. he casting quality was judged unacceptable because of the presence of excessive shrinkage porosity. It was recommended that crosshead castings be properly inspected before machining. Revision of foundry practice to reduce or eliminate porosity was also recommended.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0090454
EISBN: 978-1-62708-220-4
Abstract
A chemical storage vessel failed while in service. The failure occurred as cracking through the vessel wall, resulting in leakage of the fluid. The tank had been molded from a high-density polyethylene (HDPE) resin. The material held within the vessel was an aromatic hydrocarbon-based solvent. Investigation (visual inspection, stereomicroscopic examination, 20x/100x SEM images, micro-FTIR in the ATR mode, and analysis using DSC and TGA) supported the conclusion that the chemical storage vessel failed via a creep mechanism associated with the exertion of relatively low stresses. The source of the stress was thought to be molded-in residual stresses associated with uneven shrinkage. This was suggested by obvious distortion evident on cutting the vessel. Relatively high specific gravity and the elevated heat of fusion indicated that the material had a high level of crystallinity. In general, increased levels of crystallinity result in higher levels of molded-in stress and the corresponding warpage. The significant reduction in the modulus of the HDPE material, which accompanied the saturation of the resin with the aromatic hydrocarbon-based solvent, substantially decreased the creep resistance of the material and accelerated the failure.