Skip Nav Destination
Close Modal
By
Jeffrey A. Jansen
By
L.S. Chumbley, Larry D. Hanke
By
Friedrich Karl Naumann, Ferdinand Spies
By
Ravi Rungta, Richard C. Rice, Richard D. Buchheit, David Broek
By
R. Bradley, S. Ahmad
By
G. L. Downs, J. D. Braun, E. E. Tibbitts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 29
X-ray spectroscopy
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Characterization of Plastics in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
Abstract
This article reviews analytical techniques that are most often used in plastic component failure analysis. The description of the techniques is intended to familiarize the reader with the general principles and benefits of the methodologies, namely Fourier transform infrared spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical techniques are supplemented by a series of case studies to illustrate the significance of each method. The case studies also include pertinent visual examination results and the corresponding images that aided in the characterization of the failures.
Book Chapter
X-Ray Spectroscopy in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006770
EISBN: 978-1-62708-295-2
Abstract
X-ray spectroscopy is generally accepted as the most useful ancillary technique that can be added to any scanning electron microscope (SEM), even to the point of being considered a necessity by most operators. While “stand-alone” x-ray detection systems are used less frequently in failure analysis than the more exact instrumentation employed in SEMs, the technology is advancing and is worthy of note due to its capability for nondestructive analysis and application in the field. This article begins with information on the basis of the x-ray signal. This is followed by information on the operating principles and applications of detectors for x-ray spectroscopy, namely energy-dispersive spectrometers, wavelength-dispersive spectrometers, and handheld x-ray fluorescence systems. The processes involved in x-ray analysis in the SEM and handheld x-ray fluorescence analysis are then covered. The article ends with a discussion on the applications of x-ray spectroscopy in failure analysis.
Book Chapter
Analysis of Contaminants on Grain-Boundary Fractures
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0045918
EISBN: 978-1-62708-235-8
Abstract
Cracks, with no other damage, were observed in a niobium alloy (Nb-106) part when it was pulled from several months of protective storage for assembly into a rocket nozzle. SEM views showed the cracks to be intergranular, with contaminant particles on a large number of the grain facets. EDX analysis showed they consisted of niobium and fluorine. Plastic replicas, prepared by standard TEM techniques, were analyzed with selected-area electron diffraction, showing a pattern match for niobium tetrafluoride. Auger analyses showed electron spectra containing peaks representing carbon, oxygen, nitrogen, fluorine, and chlorine. Investigation into the processing history of the part showed the tenacious oxide film formed by the affinity of niobium for oxygen - even when heat treated in a vacuum – was removed with a combination of strong acids: nitric, hydrochloric, hydrofluoric, and lactic, resulting in the contaminants found on the surface. Thus, residues of the cleaning acid on the part had caused SCC during storage, with the tensile stresses necessary to generate SCC assumed to have been residual stresses from the heat treatment. Recommendation was made that more stringent cleaning procedures to remove any trace of the cleaning acids be used.
Book Chapter
Forging Laps in Ski Chair Lift Grip Components
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089256
EISBN: 978-1-62708-235-8
Abstract
Alloy steel forgings used as structural members of a ski chair lift grip mechanism were identified to have contained forging laps (i.e., sharp-notched discontinuities) during an annual magnetic particle inspection of all chair lift grip structural members at a mountain resort. The material was confirmed to be 34Cr-Ni-Mo6. A heavy oxide on the dark area of one of the broken-open laps was revealed by scanning electron microscopy in conjunction with EDS. A bright area that contained ductile dimple rupture was observed adjacent to the dark area. The oxidized portion of the fracture was established to be the preexisting forging lap while the bright area was created during the breaking-open process. As a corrective action all forgings showing laps were recommended to be removed from service. Critical review and revision of the forging process and revisions to the nondestructive evaluation procedures at the forging supplier was recommended.
Book Chapter
Cracking of Pipe Nipples in Welding
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001206
EISBN: 978-1-62708-235-8
Abstract
A number of seamless pipe nipples of 70 mm diam and 3.5 mm wall thickness made of steel type 35.8 were oxyacetylene welded to collectors of greater wall thickness with a round bead. X-ray examination showed crack initiation in the interior of the nipples close to the root of the weld seam. The cracks only appeared where the originally deposited bead was remelted in the regions of overlap. Given the construction and welding technique used, it would have been preferable to make the nipples of a steel lower in sulfur content. However, by taking advantage of all the potential in shaping and welding technology, it should be possible to prevent crack formation with steel type 35.8 of normal composition.
Book Chapter
Intergranular Cracking in Heat-Exchanger Welds Due to Hot Shortness
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048751
EISBN: 978-1-62708-235-8
Abstract
The presence of subsurface cracks in a longitudinal weld seam of an AISI type 316 stainless steel heat-exchanger shell was revealed by radiographic testing. Numerous intergranular cracks associated with the root pass of the weld, which had propagated both parallel and normal to the weld seam, were revealed by metallographic examination (hot shortness). It was indicated by energy-dispersive spectroscopy that type 316 electrode was not used for the root pass and instead a nickel-copper alloy electrode was employed. It was thus concluded that cracking was caused due to the use of an incorrect electrode for the root pass as these electrodes are crack sensitive if overheated. The weld seam was completely ground out and replaced with the correct electrode material as a corrective measure.
Book Chapter
Corrosion in Pyrotechnic Actuators
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0049796
EISBN: 978-1-62708-235-8
Abstract
Problems with materials compatibility were encountered in pyrotechnically driven devices used in a number of ordnance applications requiring rapid mechanical actuation. A fine bridgewire is located in contact with the chemical pyrotechnic, and the charge is ignited by electrical heating of the bridgewire. Evidence of severe corrosion was revealed on examination of the nickel-chromium-iron alloy bridgewire and the nickel-iron alloy pins. Metallic elements in the pin or bridgewire and substantial amounts of chlorine were detected from the x-ray spectra. Morphological changes indicative of decomposition and dissolution were revealed to have occurred in regions of the pyrotechnic that had been in contact with the bridgewire and pin surfaces by examination of the titanium-potassium perchlorate (Ti-K-Cl-O4) pyrotechnic. Substantial amounts of water were revealed to be associated with the surfaces of the titanium particles in the pyrotechnic by nuclear magnetic resonance. It was proposed that the chlorine-containing residue combined with the water from the pyrotechnic to form a thin aqueous film corroding the bridgewire and pins. A new cleaning procedure was implemented for the glass headers to eliminate the chloride contamination and a vacuum drying procedure was instituted for the pyrotechnic.
Book Chapter
Combined EDX/AES Analysis of Failed Inconel 600 Steam Line Bellows
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c0045911
EISBN: 978-1-62708-230-3
Abstract
Within the first few months of operation of an 8 km (5 mile) long 455 mm (18 in.) diam high-pressure steam line between a coal-fired electricity-generating plant and a paper mill, several of the Inconel 600 bellows failed. The steam line operated at 6030 kPa (875 psi) and 420 deg C (790 deg F). Metallographic sections, energy-dispersive x-ray spectra, chemical analyses, tensile tests, and Auger microscope analyses showed the failed bellows met the specifications for the material. However, investigation also showed entire oxide thickness was contaminated with relatively large amounts of sodium, calcium, potassium, aluminum, and sulfur, alkali, alkali earth, and other contaminants that completely permeated even the thin oxides on the fracture surfaces. Additional investigation of the purity of the steam itself as reported by the power plant showed that corrosion and cracks were ultimately caused by the steam. While under normal operation, the steam's purity posed no problem to the material, during boiler cleaning operations, the generating plant had allowed contamination to get into the steam line.
Book Chapter
An Investigation of Shell and Detail Cracking in Railroad Rails
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.rail.c9001659
EISBN: 978-1-62708-231-0
Abstract
A failure analysis case study on railroad rails is presented. The work, performed under the sponsorship of the Department of Transportation, addresses the problem of shell and detail fracture formation in standard rails. Fractographic and metallographic results coupled with hardness and residual stress measurements are presented. These results suggest that the shell fractures form on the plane of maximum residual tensile stresses. The formation of the shells is aided by the presence of defects in the material in these planes of maximum residual stress. The detail fracture forms as a perturbation from the shell crack under cyclic loading and is constrained to develop as an embedded flaw in the early stages of growth because the crack is impeded at the gage side and surface of the rail head by compressive longitudinal stresses.
Book Chapter
Failure of a Transfer Line on an Ethane Cracking Furnace Due to Sulfidation
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001638
EISBN: 978-1-62708-228-0
Abstract
An Incoloy 800H (UNS N08810) transfer line on the outlet of an ethane-cracking furnace failed during decoking of the furnace tubes after nine years in service. A metallographic examination using optical and scanning electron microscopy as well as energy-dispersive x-ray spectroscopy revealed that the failure was due to sulfidation. The source of the sulfur in the furnace effluent was either dimethyl disulfide, injected into the furnace feed to prevent coke formation and carburization of the furnace tubes, or contamination of the feed with sulfur bearing oil.
Book Chapter
Corrosion of a Ballast Gas Elbow Assembly
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0006417
EISBN: 978-1-62708-234-1
Abstract
A cadmium-plated 4340 Ni-Cr-Mo steel ballast elbow assembly was submitted for failure analysis to determine the element or radical present in an oxidation product found inside the elbow assembly. Energy-dispersive x-ray analysis in the SEM showed that iron was the predominant species, presumably in an oxide form. The inside surface had the appearance of typical corrosion products. Hardness measurements indicated that the 4340 steel was heat treated to a strength of approximately 862 MPa (125 ksi). It was concluded that the oxide detected on the ballast elbow was iron oxide. The possibility that the corrosion products would eventually create a blockage of the affected hole was great considering the small hole diameter (4.2 mm, or 0.165 in.). It was recommended that a quick fix to stop the corrosion would be to apply a corrosion inhibitor inside the hole. This, however, would cause the possibility of inhibitor buildup and the eventual clogging of the hole. A change in the manufacturing process to include a cadmium plating on the hole inside surface was recommended. This was to be accomplished in accordance with MIL specification QQ-P-416, Type II, Class 1. A material change to 300-series stainless steel was also recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001628
EISBN: 978-1-62708-234-1
Abstract
A nickel alloy cylinder plated with chromium along its inner liner, installed in a commercial ice cream freezer, showed gray discoloration along its OD surface. The discolored parts exhibited significantly reduced cooling efficiency as compared with new cylinders. During operation, the OD of the cylinder was exposed to liquid ammonia refrigerant containing lubricant from the compressor. The lubricant (mineral oil) was intended to separate from the ammonia and be recirculated through the compressor. Nondestructive portable optical microscopy, XRF, EDS, and XPS analyses showed that the discoloration on the cylinder was associated with metal oxidation products coated with a thin oil film. One of the recommendations was to plate the OD of the cylinder with hard chromium to increase its resistance to erosion. Another recommendation was to reduce the amounts of water contamination in the refrigerant.
Book Chapter
Crevice Corrosion on Stainless Steel Tube
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0091336
EISBN: 978-1-62708-234-1
Abstract
A type 304 austenitic stainless steel tube (0.008 max C, 18.00 to 20.00 Cr, 2.00 max Mn, 8.00 to 10.50 Ni) was found to be corroded. The tube was part of a piping system, not yet placed in service, that was exposed to an outdoor marine environment containing chlorides. As part of the assembly, a fabric bag containing palladium oxide was taped to the tube. The palladium served as a “getter.” Investigation (visual inspection and EDS analysis of corrosion debris) supported the conclusion that chlorides and palladium both contributed to corrosion in the crevice created by the tape on the tube, which was periodically exposed to water. Recommendations included taking steps to prevent water from entering and being trapped in this area of the assembly.
Book Chapter
Failure of a Nylon Filtration Unit
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0090460
EISBN: 978-1-62708-234-1
Abstract
A component of a water filtration unit failed while being used in service for approximately eight months. The filter system had been installed in a commercial laboratory, where it was stated to have been used exclusively in conjunction with deionized water. The failed part had been injection molded from a 30% glass-fiber and mineral-reinforced nylon 12 resin. Investigation, including visual inspection, 118x SEM images, 9x micrographs, energy-dispersive x-ray spectroscopy, micro-FTIR in the ATR mode, and TGA, supported the conclusion that the filter component failed as a result of molecular degradation caused by the service conditions. Specifically, the part material had undergone severe chemical attack, including oxidation and hydrolysis, through contact with silver chloride. The source of the silver chloride was not established, but one potential source was photographic silver recovery.
Book Chapter
Corrosion of Gold Bridgewire in Electronic Components
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c9001674
EISBN: 978-1-62708-234-1
Abstract
Accelerated aging tests on detonator assemblies, to verify the compatibility of gold bridgewire and Pd-In-Sn solder with the intended explosives, revealed an unusual form of corrosion. The tests, conducted at 74 deg C (165 deg F) and 54 deg C (130 deg F), indicated a preferential attack of the gold. To investigate the problem, a matrix of test units was produced and analyzed. Scanning electron microscopy, EDX analysis, and x-ray diffraction techniques were used to determine the extent of the corrosion and identify the corrosion products. The results indicated that the preferential attack of the gold was due to HCN formed by decomposition of the explosive powder at high temperatures. Other associated reactions were also observed including the subsequent attack of the solder by the gold corrosion product and degradation of the plastic header.
Book Chapter
Pitting of Stainless Steel Heat-Exchanger Tubes Due to Chloride Ions in Flush Water
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048691
EISBN: 978-1-62708-220-4
Abstract
AISI type 410 stainless steel tube bundles in a heat exchanger experienced leakage during hydrostatic testing even before being in service. The inside surfaces of the tubes was observed to have been pitted. Chloride-ion pitting was revealed by the undercutting in the cross section of a pit and further confirmed by x-ray spectrometry. It was concluded that the failure was caused by pitting due to chlorides in the water used to flush the tubes before service. The use of brackish water to flush or test stainless steel equipment was recommended to avoid pitting.
Book Chapter
Analysis of a Corrosion Failure of an Aboveground Storage Tank
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091208
EISBN: 978-1-62708-220-4
Abstract
A failure of an aboveground storage tank occurred due to external corrosion of the tank floor. The liquid asphalt tank operated at elevated temperatures (approximately 177 deg C, or 350 deg F) and had been in service for six years. Cathodic protection (rectifiers) had been installed since start-up of the tank operation. It was noted, however, that some operational problems with the rectifier may have interrupted its protection. Investigation (visual inspection, on-site examination and testing, EDS analysis of scale deposits, and MIC testing of the soil) supported the conclusion that corrosion may have been caused by an interruption in cathodic protection. The effectiveness of cathodic protection on established microbial deposits is questionable. Recommendations included ultrasonically testing the tank floor and replacing portions based on the remaining wall thickness. Doubling the wall thickness of the floor plates was also recommended.
Book Chapter
Failure of Tension Springs During Installation
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0090994
EISBN: 978-1-62708-225-9
Abstract
Two large tension springs fractured during installation. The springs were manufactured from a grade 9254 chromium-silicon steel spring wire. The associated material specification allows wire in the cold-drawn or oil-tempered (quenched-and-tempered) condition. The specified wire tensile strength range was 1689 to 1793 MPa (245 to 260 ksi). The finished springs were to be shot peened for greater fatigue resistance. Investigation (visual inspection, 3x images, 2% nital etched 148x SEM images, chemical analysis, hardness testing, and EDS analysis) supported the conclusion that the springs failed during installation due to the presence of preexisting defects. Crack surfaces were found to be corroded and phosphate coated, indicating that the cracks occurred during manufacture. Installation, which presumably entailed some axial extension, resulted in ductile overload failure at the crack sites. Recommendations included evaluating the manufacturing steps to identify the process(es) wherein the cracking was likely occurring. It was further recommended that a suitable nondestructive method such as magnetic particle inspection be implemented.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001629
EISBN: 978-1-62708-235-8
Abstract
A large number of electropolished copper parts showed evidence of discoloration (tinting) after electropolishing. Because these parts are used in a high-vacuum application, even trace amounts of organic materials would be problematic. Scanning electron microscopy of nondiscolored and discolored areas both showed trace amounts of residue in the form of adherent deposits. EDS, FTIR spectroscopy, XPS, and secondary ion mass spectroscopy (SIMS) analyses indicated that the discoloration to the copper components was due to the development of CuO at localized regions. It was recommended that process changes be made to completely remove residual processing fluids from the part surfaces before electropolishing. The use of more aggressive detergents was suggested, and it was recommended also that a filtering and recirculating system be considered for use in the cleaning and electropolishing tanks.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001633
EISBN: 978-1-62708-221-1
Abstract
Failure analysis of a mobile harbor crane wheel hub that included SEM and EDS analyses demonstrated that the mechanism of failure was fatigue. The wheel hub was a ductile cast iron component that had been subjected to cyclic loading during a ten-year service period. The fracture surface of the fatigue failure also contained corrosion deposit, suggesting that cracking occurred over a period of time sufficient to allow corrosion of the cracked surfaces. Replacement and alignment of the failed wheel hub was recommended along with inspection of the nonfailed wheel hubs that remained on the crane.
1