Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3
Warships
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001003
EISBN: 978-1-62708-227-3
Abstract
Gross wastage and embrittlement were observed in plain carbon steel desuperheaters in five new Naval power plants. The gross wastage could be duplicated in laboratory bomb tests using sodium hydroxide solutions and was concluded to be caused by free caustic concentrated by high heat flux. The embrittlement was shown to be caused by the flow of corrosion generated hydrogen which converted the cementite to methane which nucleated voids in the steel. A thermodynamic estimate indicated that a small amount of chromium would stabilize the carbides against decomposition by hydrogen in this temperature range, and laboratory tests with 2-14% Cr steel verified this.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c0091669
EISBN: 978-1-62708-227-3
Abstract
During a routine inspection, cracks were discovered in several aluminum alloy (similar to either 2014 or 2017) coupling nuts on the fuel lines of a missile. The fuel lines had been exposed to a marine atmosphere for six months while the missile stood on an outdoor test stand near the seacoast. A complete check was then made, both visually and with the aid of a low-power magnifying glass, of all coupling nuts of this type on the missile. Investigation (visual inspection, spectrographic and chemical analysis, and metallographic examination) supported the conclusion that the cracking of the aluminum alloy coupling nuts was caused by stress corrosion. Contributing factors included use of a material that is susceptible to this type of failure, sustained tensile stressing in the presence of a marine (chloride-bearing) atmosphere, and an elongated grain structure transverse to the direction of stress. The elongated grain structure transverse to the direction of stress was a consequence of following the generally used procedure of machining this type of nut from bar stock. Recommendations included changing the materials specification for new coupling nuts for this application to permit use of only aluminum alloys 6061-T6 and T651 and 2024-T6, T62, and T851.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.marine.c9001720
EISBN: 978-1-62708-227-3
Abstract
Metallographic studies found that steel used to fabricate the U.S.S. Arizona battleship during original construction, 1913-1915 and reconstruction, 1929-1931 were consistent with the best materials available during each time period. Due to the force of the forward magazine detonation, the best steel available today would not have had any impact on the outcome. Heavy banding in steels from both periods could adversely affect the corrosion resistance under anaerobic conditions that prevail during a corrosion cycle that has developed under hard biofouling layers for over 58 years. Banding would have no effect on corrosion rate under aerobic conditions that may occur in local areas on the hull. In the part of the ship from which samples for this report were obtained, high temperatures above 1340 deg F did not occur. Hull plate samples from the submerged wreckage are not yet available. These samples will be important to confirm findings to this time and determine the remaining thickness of the hull plate and, indirectly, the integrity of the fuel oil tanks.