Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Clutches and brakes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0047321
EISBN: 978-1-62708-224-2
Abstract
A 58.4 cm (23 in.) diam heavy-duty brake drum component of a cable-wound winch broke into two pieces during a shutdown period. Average service life of these drums was two weeks; none had failed by wear. The drums were sand cast from ductile iron. During haul-out, the cable on the cable drum drove the brake drum, and resistance was provided by brake bands applied to the outside surface of the brake drum. Friction during heavy service was sufficient to heat the brake drum, clutch mount, and disk to a red color. Examination of the assembly indicated that the brake drum would cool faster than its mounts and would contract onto them. Brittle fracture of the brake drum occurred as a result of thermal contraction of the drum web against the clutch mount and the disk. The ID of the drum web was enlarged sufficiently to allow for clearance between the web and the clutch mount and disk at a temperature differential of up to 555 deg C (1000 deg F). With the adoption of this procedure, brake drums failed by wear only.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001286
EISBN: 978-1-62708-215-0
Abstract
Failure of AISI 1015 steel brake discs used in power transmissions in emergency winches was investigated using various testing methods. The failed discs were stampings that had replaced cast discs. Residual stresses in the fillets of new cast and new stamped brake discs were measured by x-ray diffraction. The results indicated that the stamped brake discs had failed by fatigue caused by a tensile residual stress pattern in the fillet. The residual stress pattern was attributed to the change in manufacturing process from casting to stamping. Use of a manufacturing process that yields a compressive residual stress in the fillet, appropriate heat treatment of stamped discs, or redesign of the disc and/or transmission assembly was recommended.