Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 43
Mechanical assemblies and linkages
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006836
EISBN: 978-1-62708-329-4
Abstract
Mechanical springs are used in mechanical components to exert force, provide flexibility, and absorb or store energy. This article provides an overview of the operating conditions of mechanical springs. Common failure mechanisms and processes involved in the examination of spring failures are also discussed. In addition, the article discusses common causes of failures and presents examples of specific spring failures, describes fatigue failures that resulted from these types of material defects, and demonstrates how improper fabrication can result in premature fatigue failure. It also covers failures of shape memory alloy springs and failures caused by corrosion and operating conditions.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001209
EISBN: 978-1-62708-224-2
Abstract
Three links of a chain showing unusually strong wear were examined. Corresponding to the stress, the wear was strongest in the bends of the links, but it was especially pronounced in the bend in which the butt weld seam was located. Investigation showed the links were manufactured from an unkilled carbon-deficient steel, and were case hardened to a depth of 0.8 to 0.9 mm. The peripheral structure at the places not showing wear consisted of coarse acicular martensite with a high percentage of retained austenite. The links therefore were strongly overheated, probably directly heated during case hardening. The butt weld seams were not tight and were covered with oxide inclusions. Given that wear occurred preferentially at the welds it may be concluded that this weld defect contributed to the substantial wear. This leaves unanswered whether these chains could have withstood the high operating stress if they had been welded satisfactorily and hardened correctly, and whether it made any sense to case harden highly stressed chains of this type.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001426
EISBN: 978-1-62708-224-2
Abstract
Following three similar failures of load chains on manually operated geared pulley-blocks of 1-ton capacity, a portion of one of the chains was obtained for examination. The chain was made of mild steel and the links had been electrically butt-welded at one side. In the case of the sample obtained, the failure in service had resulted from fracture of one of the links in the plane of the weld. Six of the other links in the vicinity showed cracks in the welds in various stages of development. Microscope examination showed a crack in an early stage of development and also from an apparently sound link, the prepared surfaces lying in the planes of the links. This examination revealed that the welds were initially defective. Discontinuities were present in both cases adjacent to the insides of the links, of a type indicative of either inadequate fusion or incomplete expulsion of oxide, etc., at the time of the upset, i.e. the pressing together of the ends of the links to complete the welding. It was evident from the examination that the service failures were due to the use of chain that was initially defective.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.auto.c0090626
EISBN: 978-1-62708-218-1
Abstract
A steel spring used in an automotive application suddenly began to fail in the field, although “nothing had changed” in the fabrication process. Fatigue tests using springs fabricated prior to field failures lasted 500,000 cycles to failure, whereas fatigue tests performed on springs fabricated after field failures lasted only 50,000 cycles to failure. It was discovered that the percent coverage of shot peening prior and subsequent to the increase in failure incidence was much less than 100%, with a shot peening time of 12 min. The residual-stress state of “as fabricated” springs in three conditions were evaluated using XRD: springs manufactured prior to failure incidence increase, 12 min peen; springs manufactured following failure incidence increase, 12 min peen; and 60 min peen. The conclusion was that the failure occurred because low peening time significantly decreased the compressive residual-stress levels in the springs. Recommendation was made to increase the time the spring was shot peened from 12 to 60 min.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0048158
EISBN: 978-1-62708-229-7
Abstract
Several of the springs, made of 1.1 mm diam Inconel X-750 wire and used for tightening the interstage packing ring in a high-pressure turbine, were found broken after approximately seven years of operation. Intergranular cracks about 1.3 mm in depth and oriented at an angle of 45 deg to the axis of the wire were revealed by metallographic examination. A light-gray phase, which had the appearance of liquid-metal corrosion, was observed to have penetrated the grains on the fracture surfaces. The spring wires were found to fracture in a brittle manner characteristic of fracture from torsional loading (along a plane 45 deg to the wire axis). Liquid-metal embrittlement was expected to have been caused by metals (Sn, Zn, Pb) which melt much below maximum service temperature of the turbine. The springs were concluded to have fractured by intergranular stress-corrosion cracking promoted by the action of liquid zinc and tin in combination with static and torsional stresses on the spring wire. As a corrective measure, Na, Sn, and Zn which were present in pigmented oil used as a lubricant during spring winding was cleaned thoroughly by the spring manufacturer before shipment to remove all contaminants.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0046874
EISBN: 978-1-62708-229-7
Abstract
The safety valve on a steam turbogenerator was set to open when the steam pressure reaches 2400 kPa (348 psi). The pressure had not exceeded 1790 kPa (260 psi) when the safety-valve spring shattered into 12 pieces. The steam temperature in the line varied from about 330 to 400 deg C (625 to 750 deg F). Because the spring was enclosed and mounted above the valve, its temperature was probably slightly lower. The 195 mm (7 in.) OD x 305 mm (12 in.) long spring was made from a 35 mm (1 in.) diam rod of H21 hot-work tool steel. It had been in service for about four years and had been subjected to mildly fluctuating stresses. Analysis (visual inspection, 0.3x photographs, 0.7x light fractographs, and metallographic examination) supported the conclusions that the spring failed by corrosion fatigue that resulted from application of a fluctuating load in the presence of a moisture-laden atmosphere. Recommendations included replacing all safety valves in the system with new open-top valves that had shot-peened and galvanized steel springs. Alternatively, the valve springs could be made from a corrosion-resistant metal-for example, a 300 series austenitic stainless steel or a nickel-base alloy, such as Hastelloy B or C.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0089530
EISBN: 978-1-62708-219-8
Abstract
A sand-cast steel eye connector used to link together two 54,430 kg capacity floating-bridge pontoons failed prematurely in service. The pontoons were coupled by upper and lower eye and clevis connectors that were pinned together. The eye connector was found to be cast from low-alloy steel conforming to ASTM A 148, grade 150-125. The crack was found to have originated along the lower surface initially penetrating a region of shrinkage porosity. It was observed that cracking then propagated in tension through sound metal and terminated in a shear lip at the top of the eye. The fracture of the eye connector was concluded to have occurred by tensile overload because of shrinkage porosity. Sound metal was ensured by radiographic examination of subsequent castings.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048143
EISBN: 978-1-62708-235-8
Abstract
A cadmium-plated music-wire return spring that operated in a pneumatic cylinder designed for infinite life at a maximum stress level of 620 MPa failed after 240,000 cycles. An extremely hard and small kernel, which looked like a weld deposit, was observed at the center of the fractured surface. The kernel was assumed to have resulted from extreme localized overheating. These springs were reported to have been barrel electroplated after fabrication. The intermittent contact with the dangler (suspended cathode contact) as the barrel rotated allowed high local currents when the last contact was broken was revealed to have resulted in an arc that caused local melting of the metal being plated. The molten metal was interpreted to have been quenched instantly by the plating solution and by the mass of the cold metal of the spring. The hard spot caused by arcing during plating was concluded to be the reason of the fatigue failure. Rack plating or barrels with fixed button contacts at many points instead of dangler-type contacts were recommended to avoid hard spots.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048150
EISBN: 978-1-62708-235-8
Abstract
Grease-wiper springs for cams formed from stampings of 0.25-mm thick carbon spring steel (0.65 to 0.80% C) fractured at the 0.025 mm radius on the stamped 135 deg corner at a 90 deg bend after 5,000,000 cycles. Tool marks 2 to 2.3 mm from the center of the stamped bend were disclosed by visual examination. Fatigue striations originating from cracks at the 0.025 mm radius inside corner at the bend were revealed by SEM of the fractured surface. The maximum stress at the bend, in stock of maximum thickness and as a function of the radius of the 135 deg corner, was indicated by stress calculations to be very close to the maximum allowable fluctuating stress for the material. The wiper springs were concluded to be fractured in fatigue and the cyclic loading resulted from cam rotation. The maximum applied stress approached the allowable limit due to high stress-concentration factor in the spring (caused by the very small inside radius). The corner radius was increased to 0.76 mm and the tools were re-polished to avoid tool marks.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048154
EISBN: 978-1-62708-235-8
Abstract
A medium-carbon helical spring was installed in a machine assembly that was welded into its final location. Weld spatter was not prevented from landing on the wire surface by any shield. An elongated drop and two tiny droplets of metal were observed a short distance from the fracture. No droplets were revealed at the origin of the fracture, but it was assumed that a drop of molten metal landed at the origin. Adherence of the spatter drop was expected to have been affected by the opening and closing of the fatigue crack. Weld spatter bead was concluded to have caused the fatigue fracture.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0047753
EISBN: 978-1-62708-235-8
Abstract
A pressure probe assembly comprised of type 347 stainless steel housing, brazed with AMS 4772D filler metal to the pressure probe, failed due to detachment of a rectangular segment from the housing. The presence of a large brazing metal devoid region in the pressure probe-housing joint was revealed by visual examination. Fatigue marks, emanating from multiple crack origins on the inside surface of the housing at the brazed joint were revealed by further study of the fracture. A poor metallurgical bond was confirmed by the presence of large irregular voids, flux trapped braze metal and separation between braze and housing.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048156
EISBN: 978-1-62708-235-8
Abstract
A 6150 flat spring was found to be failed. The face of the spring was revealed to be under tensile stress. The failure was concluded to have begun at the dark spot on the edge where roughness resulted from shearing during the blanking operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0089651
EISBN: 978-1-62708-235-8
Abstract
Several diesel-engine rocker levers (malleable iron similar to ASTM A 602, grade M7002) failed at low hours in overspeed, over-fuel, highly loaded developmental engine tests. Identical rocker levers had performed acceptably in normal engine tests. The rocker levers were failing through the radius of an adjusting screw arm. The typical fracture face exhibited two distinct modes of crack propagation: the upper portion indicated overload at final fracture, whereas the majority of the fracture suggested a fatigue fracture. Investigation (visual inspection, 1.5x/30x/60x magnification, and nital etched 300x magnification) supported the conclusion that the rocker levers failed in fatigue, with casting defects, or spiking, acting as stress raisers to initiate failures in highly loaded engine tests. Recommendations included shot peening of the levers as an interim measure to reduce the possibility of failure and redesign to increase the cross-sectional area of the levers.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048117
EISBN: 978-1-62708-235-8
Abstract
Two outer valve springs made from air-melted 6150 pretempered steel wire broke during production engine testing. The springs were 50 mm in OD and 64 mm in free length, had five coils and squared-and-ground ends, and were made of 5.5 mm diam wire. It was revealed that fracture was nucleated by an apparent longitudinal subsurface defect. The defect was revealed by microscopic examination to be a large pocket of nonmetallic inclusions (alumina and silicate particles) at the origin of the fracture. Partial decarburization of the steel was observed at the periphery of the pocket of inclusions. Torsional fracture was indicated by the presence of beach marks at a 45 deg angle to the wire axis. It was established that the spring fractured by fatigue nucleated at the subsurface defect.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048124
EISBN: 978-1-62708-235-8
Abstract
Presence of transverse marks which were remnant of grinding was indicated in a failed valve spring made from ground rod. The shot-peening pattern was light at this location. A transverse crack was found to grow from one such mark under the influence of local stress fields until it was reoriented to the plane normal to the major tensile axis by sufficient loading. The shot-peening procedure was altered to create adequate surface compression at all stressed points on the springs.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c0048134
EISBN: 978-1-62708-235-8
Abstract
A copper alloy C51000 (phosphor bronze, 5%A) failed prematurely during life testing of several such springs. The wire used for the springs was 0.46 mm (0.018 in.) in diam and was in the spring-temper condition. The springs were revealed to be subjected to cyclic loading, in the horizontal and vertical planes during the testing. The fracture was revealed to have occurred in bend 2. An indentation, presumably caused by the bending tool during forming, at the inner surface of the bend where fracture occurred was revealed by microscopic examination. Spiral marks produced on springs during rotary straightening were observed. A crack that had originated at the surface at the inside bend and had propagated toward the outside of the bend was revealed by microscopy of a longitudinal section taken through bend 2. The small bend radius was interpreted to contribute to spring fatigue as a result of result in straining at the bend zone. The spring was concluded to have failed in fatigue. It was recommended that the springs should be made of wire free from straightener marks and the bending tool should be redesigned so as not to indent the wire.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001179
EISBN: 978-1-62708-228-0
Abstract
During natural gas drilling in the EMS region in 1956, considerable numbers of longitudinal cracks and transverse fractures occurred in the connecting pieces of the bore rods. The connectors were screwed onto the rods by means of a fine thread and tightly joined with it by shrinkage at 530 deg C. The connectors were made of SAE 4140 Cr-Mo steel. The material for the rod pipes was Fe-0.4C-1Mn steel. Structural stresses played a role in the cracking. Iron sulfide formed on the fracture planes and flake-like stress cracks occurred in the steel. The hydrogen sulfide content of the gas was the cause of damage. Hydrogen liberated by reaction with the iron caused the formation of iron sulfide after penetration of the steel, which had an explosive effect during molecular separation under high pressure. This in turn caused the crack formation in conjunction with the external and residual stresses.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.petrol.c9001185
EISBN: 978-1-62708-228-0
Abstract
U-shaped leaf springs, intended to serve as spacers between oil tank floats and the inner walls of the containers, broke while being fitted, or after a short time in use, in the bend of the U. The springs were made of tempered strip steel of type C 88 with 0.84 % C, bent at room temperature, and electroplated with cadmium for protection against corrosion. Each fracture showed seven or eight kidney-shaped cracks. At the origins of these cracks on the concave inner surface of the springs, crater-like depressions and beads of melted and resolidified material were found. Fracture of the springs was caused by stress cracks as a consequence of local hardening. The hardening caused by melting and resolidification, and therefore the cracks in the springs, was the result of a faulty procedure during cadmium electroplating.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c0048169
EISBN: 978-1-62708-233-4
Abstract
A valve-seat retainer spring (made of 0.23 mm thick 17-7 PH stainless steel) from a fuel control on an aircraft engine was found to be broken after 3980 h of service. The two inner tabs were found to be broken off. The part was revealed to be in relative rotation against its contacting member by the radial wear marks on the convex surface. Beach marks indicating that fatigue fracture had been initiated at the convex surface of the washer and had propagated across to the concave surface were revealed by examination of the fractured surfaces of the washer. The cracks were revealed to have originated in the 0.38-mm radius fillet between the tab and the body of the washer. It was interpreted from the analysis of the compound fracture that it was composed of fatigue fractures caused by the formed tab being loaded so as to compress the spring along the axis of its centerline and produce torsional vibrations. It was concluded that the two inner tabs had broken in fatigue as the result of cyclic loading that compressed and torsionally vibrated the spring. The fillets were replaced with slots to minimize stress concentration at the corners as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001582
EISBN: 978-1-62708-233-4
Abstract
This article discusses the failure of cylinder clamping rods in single cylinder diesel engines. The AISI 4140 hardened and tempered steel clamping rods were failing after 200 to 250 h of operation. The fatigue failures initiated at the root of the last thread on the clamping rod that was engaged in a blind hole in the cylinder block. The failures were caused by loose tolerances on the threads that resulted in a non-uniform distribution of load. The load was concentrated on the last threads to engage, thus causing fatigue crack nucleation at the thread root and propagation until the rod broke by overload. Changing the tolerance on the threads virtually eliminated the fatigue problem.
1