Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-10 of 10
Wire rope
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001817
EISBN: 978-1-62708-241-9
Abstract
A wire hoisting rope on a drilling rig failed during a lift, after a few cycles of operation, causing extensive damage to support structures. The failure investigation that followed included mechanical property testing and chemical, metallurgical, and finite element analysis. The rope was made from multiple strands of 1095 steel wire. Its chemical composition, ferrite-pearlite structure, and high hardness indicate that the wire is a type of extra improved plow steel (EEIPS grade). The morphologies of the fracture surfaces suggest that the wires were subjected to tensile overloading. This was confirmed by finite element analysis, which also revealed compressive contact stresses between the wires and between the rope and sheave surface. Based on the results, it was concluded that a tensile overload, due to the combined effect of a sudden load and undersized sheave, is what ultimately caused the rope to fail.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001464
EISBN: 978-1-62708-221-1
Abstract
Fractures and a crack occurred in a length of excavator boom rope. Failure took place at regions where local corrosion was evident. Microscopic examination of longitudinal sections disclosed that the majority of the cracks were broad, these being typical of corrosion-fatigue fissures. In addition, cracking took the form more typical of a fatigue crack and appeared to have originated at a stress-raiser introduced by a corrosion pit on the surface of the wire. The tendency for corrosion-fatigue cracking or the formation of pits from which fatigue cracks can develop can he reduced, if not prevented, in wire ropes by regular attention to lubrication.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001680
EISBN: 978-1-62708-221-1
Abstract
The fatigue failure of a wire rope used on a skip hoist in an underground mine has been studied as part of the ongoing research by the Bureau of Mines into haulage and materials handling hazards in mines. Macroscopic correlation of individual wire failures with wear patterns, fractography, and microhardness testing were used to gain an understanding of the failure mechanism. Wire failures occurred predominantly at characteristic wear sites between strands. These wear sites are identifiable by a large reduction in diameter; however, reduction in area was not responsible for the location of failure. Fractography revealed multiple crack initiation sites to be located at other less noticeable wear sites or opposite the characteristic wear site. Microhardness testing revealed hardening, and some softening, at wear sites.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048035
EISBN: 978-1-62708-224-2
Abstract
A 3.8-cm diam 6 x 37 rope of improved plow steel wire failed in service during dumping of a ladle of hot slag. A heavy blue oxide extending 0.6 to 0.9 m back from each side of the break was revealed on examination of the rope. Tensile fractures were shown by the broken ends of the rope. Recrystallization of the steel was revealed during microscopic examination of the wires adjacent to the break which indicated that the wires had been heated in excess of 700 deg C (1292 deg F). The tensile strength of the wires in the rope that broke was 896 MPa whereas the specification required it to be 1724 MPa. Thus, a 50% loss in tensile strength of the wires was caused by overheating which lead to failure of the rope. It was recommended that prolonged exposure of wire ropes to extreme conditions should be avoided.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048020
EISBN: 978-1-62708-224-2
Abstract
A 13 mm diam 18 x 7 fiber-core improved plow steel nonrotating wire rope, brought into service as a replacement for 6 x 37 improved plow steel ropes, failed after 14 months of service on a stacker crane. The change was reported to have been caused by difficulties twisting of the 6 x 37 rope. The hoist arrangement for this crane was found to consist of one rope with each end attached to a separate drum and the rope was wound around two 30-cm diam sheaves in the block and back up around an equalizer sheave. The rope section that had been in contact with the sheaves was deduced by measurement checks. The presence of broken wire ends, which indicated that the rope failed by fatigue, was revealed by reverse bending of the section of the rope which was normally subjected to this flexing. It was found that minimum sheave diam for a 13-mm 18 x 7 wire rope was 43 cm and hence the currently used smaller sheaves caused excessive bending stresses in the rope. The 18 x 7 rope was replaced by two 6 x 37 side-by-side counter-stranded steel-core ropes as a corrective measure.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048026
EISBN: 978-1-62708-224-2
Abstract
The 11 mm diam 8 x 19 fiber-core rope, constructed from improved plow steel wire, on the cleaning-line crane failed while lifting a normal load of coils after five weeks of service. Several broken wires and fraying of the fiber core were revealed by visual examination of a section of the wire rope adjacent to the fracture. Fatigue cracks originating from both sides of the wire were revealed by microscopic examination of a longitudinal section of a wire. The diam of the sheave on the bale (27 cm) was found to be slightly below that specified for the 11 mm diam rope. It was observed that the sudden shock received by the hook in rolling the coils over the edge of the rinse tank after pickling caused vibration which was most severe at the clamped end of the rope. It was concluded that this caused the fatigue failure of the rope. As a corrective measure, the diam of the sheave was increased to 33 cm and pitched roll plates were installed between the tanks where rolling of coils was required.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c0048031
EISBN: 978-1-62708-224-2
Abstract
The 16 mm diam 6 x 37 fiber-core improved plow steel wire rope on a scrapyard crane failed after two weeks of service under normal loading conditions. This type of rope was made of 0.71 to 0.75% carbon steel wires and a tensile strength of 1696 to 1917 MPa. The rope broke when it was attached to a chain for pulling jammed scrap from the baler. The rope was heavily abraded and several of the individual wires were broken. a uniform cold-drawn microstructure, with patches of untempered martensite in regions of severe abrasion and crown wear was revealed by metallographic examination. As a result of abrasion, a hard layer of martensite was formed on the wire. The wire was made susceptible to fatigue cracking, while bending around the sheave, by this brittle surface layer. The carbon content and tensile strength of the wire was found lower than specifications. As a corrective measure, this wire rope was substituted by the more abrasion resistant 6 x 19 rope.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.matlhand.c9001527
EISBN: 978-1-62708-224-2
Abstract
Mechanical properties of wire ropes, their chemical composition, and the failure analysis process for them are described. The wires are manufactured from high-carbon, plain carbon steel, with high-strength ropes most often manufactured from AISI Grade 1074. During visual failure examination, the rope, strand, and wire diameters should all be measured. Examination should also address the presence or absence of lubricant, corrosion evidence, and gross mechanical damage. Failed wires can exhibit classic cup-and-cone ductile features, flat fatigue features, and various appearances in-between. However, wires are often mechanically damaged after failure. Most nondestructive evaluation (NDE) techniques are not applicable to wire rope failures. Electron microscope fractography of fracture surfaces is essential in failure analysis. Fatigue is the most important fracture mode in wire ropes. Metallographic features of wire ropes that failed because of ductile overload and fatigue are described.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001285
EISBN: 978-1-62708-215-0
Abstract
A 6 x 19 fiber core steel wire rope failed as it was being used to lower a steel television tower. Fracture of the rope occurred at a point under one of two clips used to fashion a spliced loop that was directly connected to the top of the tower. Microscopic examination of the fracture surfaces and the condition of the individual wires revealed that 59% of the wires failed by shear, 39% failed in tension, and 2% had been cut. In addition, 87% of the wires showed some degree of crushing damage, ranging from mild to severe. The failure was attributed to improper installation of the clips.