Skip Nav Destination
Close Modal
By
P.C. Chan, J.C. Thornley
By
A.H. Khan
By
Jack J. Bodzin, Gordon W. Houser
By
G. Mark Tanner, James R. Harty
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Coal pulverizers
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Failure of a Coal-Pulverizer Shafts from a Generation Station
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001620
EISBN: 978-1-62708-229-7
Abstract
Two vertical coal-pulverizer shafts at a coal-fired generation station failed after four to five years in service. One shaft was completely broken, and the other was unbroken but cracked at both ends. shaft material was AISI type 4340 Ni-Cr- Mo alloy steel, with a uniform hardness of approximately HRC 27. Metallographic examination of transverse sections through the surface-damaged areas adjacent to the cracks also showed additional small cracks growing at an angle of approximately 60 deg to the surface. The crack propagation mode appeared to be wholly transgranular. SEM examination revealed finely spaced striations on the crack surfaces, supporting a diagnosis of fatigue cracking. Crack initiation in the pulverizer shafts started as a result of fretting fatigue. Greater attention to lubrication was suggested, combined with asking the manufacturer to consider nitriding the splined shaft. It was suggested that the surfaces be securely clamped together and that an in-service maintenance program be initiated to ensure that the tightness of the clamping bolts was verified regularly.
Book Chapter
Corrosion of Copper Cooling-Water Tubing in a Heat Exchanger
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001700
EISBN: 978-1-62708-229-7
Abstract
A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral surfaces. Several of the heat exchangers used in the same application at the plant had experienced a severe reduction in efficiency in the past few years. One heat exchanger reportedly experienced some form of leakage following discovery of oil contaminating the cooling water. This heat exchanger was the subject of a failure investigation to determine the cause and location of the leaks. Corrosion products primarily contained copper oxide, as would be expected from a copper tubing. The product also exhibited the presence of a significant amount of iron oxides. Metallographic cross sectioning of the tubes and microscopic analysis revealed several large and small well rounded corrosion pits present at the inner diametral surfaces. The cause of corrosion was attributed to corrosive waters that were not only corroding the copper, but were corroding steel pipes upstream from the tubing.
Book Chapter
Fatigue Fracture of a 6150 Steel Main Shaft in a Coal Pulverizer
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c0047813
EISBN: 978-1-62708-229-7
Abstract
After being in service for ten years the ball-and-race coal pulverizer was investigated after noises were noted in it. Its lower grinding ring was attached to the 6150 normalized steel outer main shaft while the upper grinding ring was suspended by springs from a spider attached to the shaft. A circumferential crack in the main shaft at an abrupt change in shaft diam just below the upper radial bearing was revealed by visual examination. The smaller end of the shaft was found to be slightly eccentric with the remainder when the shaft was set up in a lathe to machine out the crack for repair welding. The crack was opened by striking the small end of the shaft and the shaft was broken 1.3 cm away from the crack in the process. A previous fracture that resulted from torsional loading acting along a plane of maximum shear was revealed almost perpendicular to the axis of the shaft. Faint lines parallel to the visible crack thought to be fatigue cracks were revealed on examination of the machined surface. The shaft was repaired by welding a new section and machined to required diameters and tapers to avoid abrupt changes.
Book Chapter
Analysis of an Unusual Failure of a Steel Shaft in a Coal Pulverizer
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.power.c9001730
EISBN: 978-1-62708-229-7
Abstract
A shaft can crack twice before it fails. A Detroit electric plant had this experience with one in a coal pulverizer. Because the first crack rewelded partially (by friction) in service, the pulverizer remained serviceable until the second crack developed.
Book Chapter
Contact Fatigue Failure of A Bull Gear
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001300
EISBN: 978-1-62708-215-0
Abstract
A bull gear from a coal pulverizer at a utility failed by rolling-contact fatigue as the result of continual overloading of the gear and a nonuniform, case-hardened surface of the gear teeth. The gear consisted of an AISI 4140 Cr-Mo steel gear ring that was shrunk fit and pinned onto a cast iron hub. The wear and pitting pattern in the addendum area of the gear teeth indicated that either the gear or pinion was out of alignment. Beach marks observed on the fractured surface of the gear indicated that fatigue was the cause of the gear failure. Similar gears should be inspected carefully for signs of cracking or misalignment. Ultrasonic testing is recommended for detection of subsurface cracks, while magnetic particle testing will detect surface cracking. Visual inspection can be used to determine the teeth contact pattern.