Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7
Electric motors
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.design.c9001424
EISBN: 978-1-62708-233-4
Abstract
Two examples concerning fabricated mild steel rotor spiders which failed due to lack of torsional rigidity, probably supplemented by the presence of high internal stress, are described. The machine concerned in the first case was a 3,000 hp three-phase slip-ring motor. In the second case the machine was a 200 kW alternator, direct-driven by a diesel engine running at 750 rpm. Both the foregoing failures reveal the same basic weakness, i.e., insufficient rigidity when subjected to variations or reversals of torque. In the first case, the bars welded to the arms were inadequately supported in a lateral direction, so that excessive stresses of a fluctuating nature were set up in the welds as a result of the frequent load changes that arose in service. This weakness was eliminated when designing the replacement spider. In the second example, failure also arose as a result of deficient torsional rigidity with the consequent development of excessive stresses in the welds at the junctions of the bars with the sleeve, the torque being of a fluctuating character due to the impulses imparted by the engine.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c9001900
EISBN: 978-1-62708-225-9
Abstract
Incorrect grounding of an electric motor resulted in electric current passing through a 52100 steel ball bearing and caused multiple arcing between the rolling elements. The multiple arcing developed a pattern on the outer race known as ‘fluting’. A section of ball race outer showed the distinct banding (fluting) resulting from spark discharges while the bearing was rotating. The severe distress of the surface resulted in unacceptable levels of vibration. An SEM photograph of the banded regions showed smoothing of the asperities from continued operation is evident. In the craters the residue of partial melting was seen.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001443
EISBN: 978-1-62708-235-8
Abstract
Following the fusing of one of the copper leads in the choke circuit of an electric welder, a piece of the affected lead was obtained for examination. The sample had large internal cavities and surface bulges. It is remarkable that a wire containing defects of the magnitude present in this case could have been drawn without failure. Failure in service was due to overheating resulting from the inability of the conductor to carry the current where its cross section was reduced by the presence of a cavity. Another failure of a conductor occurred in one of the field coils of a direct-current motor. The mode of failure and the changes in the microstructure showed that fracture was due to a defective resistance butt-weld which had been made when the wire was in process of drawing. A further example of a conductor failure occurred in a 12 SWG copper connection between the rotor contactor and the resistance in a starter. A transverse section through the zone of failure showed an oxide layer extended almost completely across the plane of a weld, and also the grain growth that had occurred in this region.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.process.c9001397
EISBN: 978-1-62708-235-8
Abstract
Banding wires of the rotor of an 1800 hp motor were renewed following replacement of the banding rings. After about six months of service, a breakdown occurred due to bursting of the banding wires in several places. The 0.064 in. diam wire was nonmagnetic and of the 18/8 Cr-Ni type of austenitic stainless steel. The fractures were short and partially crystalline, with no evidence of slowly developing cracks of the fatigue type. Microscopical examination of sections taken through the fractures showed the cracking to be of the multiple branching type. Because the material was in the heavily cold-worked condition, it was not possible to determine with certainty if the cracks were of the inter- or trans-granular type. It was concluded that failure was due to stress-corrosion cracking in a chloride environment. Failure of the wires was likely due to the use of a chloride-containing flux during the soldering operation.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047865
EISBN: 978-1-62708-225-9
Abstract
Splined rotor shafts (constructed from 1151 steel) used on small electric motors were found to miss one spline each from several shafts before the motors were put into service. Apparent peeling of splines on the induction-hardened end of each rotor shaft was revealed by visual and stereo-microscopic examination. One tooth on each shaft was found to be broken off. It was revealed by metallographic examination of an unetched section through the fractured tooth that the fracture surface was concave and had an appearance characteristic of a seam. Partial decarburization of the surface was revealed after etching with 1% nital. The presence of a crack, with typical oxides found in seams at its root, was disclosed by an unetched section through the shaft in an area unaffected by induction heating. The etched samples revealed similar decarburization as was noted on the fracture surface of the tooth. It was concluded that the seam had been present before the shaft was heat treated and these seams acted as stress raisers during induction hardening to cause the shaft failure. It was recommended that the specifications should specify that the shaft material should be free of seams and other surface imperfections.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047935
EISBN: 978-1-62708-225-9
Abstract
Ball bearings made of type 440C stainless steel hardened to 60 HRC and suspected as the source of intermittent noise in an office machine were examined. A number of spots on the inner-ring raceway were revealed by scanning electron microscopy. The metal in the area around the spot was evidenced to have been melted and welded to the inner-ring raceway. It was revealed by randomly spaced welded areas on the raceways that the welding was the result of short electrical discharges between the bearing raceways and the balls. The use of an electrically nonconductive lubricant in the bearings was suspected to have caused the electric discharge by accumulation and discharge of static charge. The electrical resistance between the rotor and the motor frame lubricated with electrically conductive grease and the grease used in the current case was measured and compared to confirm the fact the currently used grease was nonconductive. It was concluded that the pits were formed by momentary welding between the ball and ring surfaces. The lubricant was replaced by electrically conductive grease as a corrective measure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.mech.c0047939
EISBN: 978-1-62708-225-9
Abstract
Rough operation of the roller bearing mounted in an electric motor/gearbox assembly was observed. The bearing components made of low-alloy steel (4620 or 8620) and the cup, cone and rollers were carburized, hardened and tempered. The contact surfaces of these components (cup, cone and roller) were revealed to be uniformly electrolytically etched by visual examination. The action similar to anodic etching was believed to have occurred as a result of stray currents in the electric motor (not properly grounded) and the presence of an electrolyte (moisture) between the cup and roller surfaces of the bearing. As a remedial action, the bearing was insulated for protection from stray currents by grounding of the motor and the moisture was kept out by sealing both bearings in the assembly.