Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Truck mounted cranes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.conag.c9001139
EISBN: 978-1-62708-221-1
Abstract
A truck-mounted hydraulic crane had a horizontal thrust bearing with one race attached to the truck and the other to the rotating crane. The outside race of the bearing was driven by a pinion gear, and it is through this mechanism that the crane body rotated about a vertical axis. The manufacturer welded the inner race to the carrier in a single pass. After several years of service, the attachment weld between the bearing inner race and the turntable failed in the area adjacent to the heat-affected zone. The fracture zone where there was the greatest tension was heavily oxidized. In the zone where the bearing was in compression, there was a clean surface indicating recent fracture. Finally, there were areas where the weld did not meet AWS specifications for convexity or concavity. These areas were weak enough to allow fatigue cracks to initiate. Recommendations to prevent reoccurrence of the failure include the use of bolts in lieu of welding, a welding schedule that reduces the propensity of lamellar tearing, and the use of an alloy that precludes lamellar tearing. However, if abuse of the crane was the primary cause of failure, none of these recommendations would have prevented deterioration of the machine to an extent that would have rendered the failure improbable.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001388
EISBN: 978-1-62708-215-0
Abstract
JIS SCM435 steel bolts that connected the slewing ring to the base carrier on a truck crane failed during the lifting of steel piles. The bolts were double-ended stud types and had been in operation for 5600 h. Failure occurred in the root of the external thread that was in contact with the first internal thread in the slewing ring. Examination of plastic carbon replicas indicated that failure was the result of fatigue action. Failure was attributed to overloading during service and increased stress concentration on a few bolts due to nonuniform separations around the slewing ring. A design change to achieve equal separation between bolt holes was recommended.