Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-5 of 5
Evaporators
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.pulp.c9001567
EISBN: 978-1-62708-230-3
Abstract
A falling film black liquor evaporator consisted of flat twin plate heat exchangers and was used to increase black liquor solids content prior to its burning in the recovery boiler. Several plate heat exchangers were fabricated of AISI type 316L stainless steel by electric resistance welding. Cracks initiated at the inside surface of the welded areas and penetrated through the wall thickness. In several locations, the weld fractured and the plates separated with significant spring back, indicative of high residual stresses attributed to fabrication and weld procedures. The cracks had extended radially from the electric resistant weld into the base metal. Metallographic examination revealed the cracks were transgranular and branching, characteristic of SCC in austenitic stainless steels. The fracture surfaces had a brittle cleavage-like appearance, typical of SCC in austenitic stainless steels. Chlorides in the service environment were a contributory factor. The primary factor causing SCC localized at the electric resistant welds was substantial residual stresses as a result of fabrication procedures. It was recommended that the heat exchanger plates be subjected to stress-relief heat treatment following fabrication and welding.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0047611
EISBN: 978-1-62708-220-4
Abstract
Several tubes in a tube bundle in an evaporator used to concentrate an acid nitrate solution failed by leakage. The feed to the evaporator contained about 6% nitrate, and the discharge about 60% nitrate. The tube bundle was comprised of type 309S (Nb) stainless steel drawn-and-welded tubes expanded and welded into two type 304L stainless steel tube sheets. The tubes failed by crevice corrosion. The failed tubes were defective as-received, and the establishment of concentration cells within the longitudinal cracks in the seam welds led to ultimate corrosive penetration of the wall. There was no evidence of crevice corrosion or any localized penetration of tubes that had sound welds. The leaking type 309S (Nb) welded tubes should be replaced with seamless tubes of type 304L stainless steel to minimize the areas requiring welding and to provide maximum weldability for the tube-sheet joints.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001404
EISBN: 978-1-62708-220-4
Abstract
After about four years of service, cracks appeared on the internal or process-side surfaces of four evaporator pans in a sugar concentrator. The pans consisted of a Mo stabilized austenitic stainless steel inner vessel surrounded by a mild steel steam jacket. Corrosion of the external surface had taken place in the form of confluent pitting over a band adjacent to the fillet weld which attached the pan to the blocking ring. Numerous cracks were present in this corroded zone. Microscopical examination of several specimens cut from the sample revealed that the internal cracks in the pan itself originated from the external side of the plate, i.e. from the region covered by the shrouding ring. They were predominantly of the transgranular type. Because the cracks were not of the intergranular type as usually found with weld decay, they were considered to be indicative of stress-corrosion cracking. Stresses responsible for the cracking resulted from weld contraction. The pans had been hosed down periodically with water from local boreholes to remove sugar from the external surfaces, which introduced the corrosive medium.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0060104
EISBN: 978-1-62708-220-4
Abstract
Eddy current inspection was performed on a vertical evaporator unit (that contained 180 tubes) used in a chemical processing plant. It was advised that the tube material was type 316 stainless steel. The shell-side fluid was condensate and gaseous methylene chloride, while the tube-side fluid was contaminated liquid methylene chloride. More than 100 tubes exhibiting severe outer surface pitting and cracklike indications near each tube sheet were revealed during eddy current inspection. It was observed that the indications correlated with rust-stained, pitted, and cracked areas on the outer surfaces. The cracking was revealed by metallographic examination to have initiated from the outer surface, frequently at pits, and penetrated the tube wall in a transgranular, branching fashion. The crack features were characteristic of chloride stress-corrosion cracking. A change in tube material was recommended to avoid future failures and loss of service.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001032
EISBN: 978-1-62708-214-3
Abstract
A Stirling engine heat pipe failed after only 2h of operation in a test situation. Cracking at the leading edge of an evaporator fin allowed air to enter the system and react with the sodium coolant. The fin was fabricated from 0.8 mm (0.03 in.) thick Inconel 600 sheet. The wick material was type 316 stainless steel. Macro- and microexaminations of specimens from the failed heat pipe were conducted. The fin cracking was caused by overheating that produced intergranular corrosion in both the fin and the wick. Recommendations for alleviating the corrosion problem included reducing the heat flux, redesigning the wick, and reducing the oxygen content of the sodium.