Skip Nav Destination
Close Modal
By
S. Maruthamuthu, P. Dhandapani, S. Ponmariappan, S. Sathiyanarayanan, S. Muthukrishnan ...
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 206
Chemical and petrochemical processing equipment
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006822
EISBN: 978-1-62708-329-4
Abstract
This article discusses the failure analysis of several steel transmission pipeline failures, describes the causes and characteristics of specific pipeline failure modes, and introduces pipeline failure prevention and integrity management practices and methodologies. In addition, it covers the use of transmission pipeline in North America, discusses the procedures in pipeline failure analysis investigation, and provides a brief background on the most commonly observed pipeline flaws and degradation mechanisms. A case study related to hydrogen cracking and a hard spot is also presented.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006812
EISBN: 978-1-62708-329-4
Abstract
This article discusses pressure vessels, piping, and associated pressure-boundary items of the types used in nuclear and conventional power plants, refineries, and chemical-processing plants. It begins by explaining the necessity of conducting a failure analysis, followed by the objectives of a failure analysis. Then, the article discusses the processes involved in failure analysis, including codes and standards. Next, fabrication flaws that can develop into failures of in-service pressure vessels and piping are covered. This is followed by sections discussing in-service mechanical and metallurgical failures, environment-assisted cracking failures, and other damage mechanisms that induce cracking failures. Finally, the article provides information on inspection practices.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001757
EISBN: 978-1-62708-241-9
Abstract
Rotor blades in the compressor section of a J79 engine had failed. Optical, stereoscopic, microhardness testing, and SEM examinations were conducted to determine the cause. The blades were made of STS403 and were used uncoated. They were damaged over an extensive area, from the 15th through the 17th compressor stages, as were stator vanes and casing sections. The fractured surface of the 17th blade showed multiple origins along with secondary cracking and extensive propagation that preceded separation. The metallographic analysis of the microstructure suggested work hardening. Based on the results, the cause of the fractured blade was high-amplitude fatigue due to severe stall. After normal engine usage of five months, the blade fractured sending fragments throughout the combustion and turbine sections.
Book Chapter
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001769
EISBN: 978-1-62708-241-9
Abstract
This study examines the role of calcium-precipitating bacteria (CPB) in heat exchanger tube failures. Several types of bacteria, including Serratia sp. (FJ973548), Enterobacter sp. (FJ973549, FJ973550), and Enterococcus sp. (FJ973551), were found in scale collected from heat exchanger tubes taken out of service at a gas turbine power station. The corrosive effect of each type of bacteria on mild steel was investigated using electrochemical (polarization and impedance) techniques, and the biogenic calcium scale formations analyzed by XRD. It was shown that the bacteria contribute directly to the formation of calcium carbonate, a critical factor in the buildup of scale and pitting corrosion on heat exchanger tubes.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001770
EISBN: 978-1-62708-241-9
Abstract
A storage tank had been in service at a petrochemical plant for 13 years when inspectors discovered cracks adjacent to weld joints and in the base plate near the foundation. The tank was made from AISI 304 stainless steel and held styrene monomer, a derivative of benzene. The cracks were subsequently welded over with 308 stainless steel filler wire and the base plate was replaced with new material. Soon after, the tank began leaking along the weld bead, triggering a full-scale investigation; spectroscopy, optical and scanning electron microscopy, fractography, SEM-EDS analysis, and microhardness, tensile, and impact testing. The results revealed transgranular cracks in the HAZ and base plate, likely initiated by stresses developed during welding and the presence of chloride from seawater used in the plant. It was also found that the repair weld was improperly done, nor did it include a postweld heat treatment to remove weld sensitization and minimize residual stresses.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001772
EISBN: 978-1-62708-241-9
Abstract
A cast silicon bronze (UNS C86700) impeller that had been severely corroded was submitted for failure analysis. The failed part was used to pump potable water, but service life and chlorine content of the water were unknown. The impeller displayed a Cu-rich red phase on its surfaces and showed a pattern very similar to dezincification. Further investigation to determine the cause of damage using light microscopy and SEM-EDS techniques revealed that the microstructure consisted of multiple phases and that a Si-rich phase was being preferentially attacked, leading to increased porosity. After a thorough examination, it was concluded that the part had failed due to dealloying via desiliconification.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001773
EISBN: 978-1-62708-241-9
Abstract
A spiral heat exchanger made from 316L stainless steel developed a leak after eight years of service as a condenser on a distillation tower. Examination identified the leak as being located on the cooling water side in the heat affected zone (HAZ) of a weld joining two plates. Cooling water deposits were observed in a V-shaped corner formed by the weld. A metallurgical examination identified the presence of transgranular cracks in the HAZ on the cooling water side. Analysis of the cooling water revealed the presence of chlorides. Based on the metallurgical analysis and other findings, it was determined that the cracks and associated leak were the result of chloride stress-corrosion cracking.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001774
EISBN: 978-1-62708-241-9
Abstract
A ring-type joint in a reactor pipeline for a hydrocracker unit had failed. Cracks were observed on the flange and the associated ring gasket during an inspection following a periodic shutdown of the unit. The components were manufactured from stabilized grades of austenitic stainless steel; the flange from type 321, and the ring gasket from 347. Examination revealed that the failure occurred by transgranular stress-corrosion cracking, initiated by the presence of polythionic acid. Detailed metallurgical investigation was subsequently conducted to identify what may have caused the formation of polythionic acid in the process gas.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001775
EISBN: 978-1-62708-241-9
Abstract
A bent Ni-Cu Monel 400 alloy tube, which operated as part of a pipeline in a petrochemical distillery, failed by through-thickness cracking. The pipeline was used to carry a stream of gaseous hydrocarbons containing hydrochloric acid (HCl) into a reaction tower. The tower provided a caustic solution (NaOH) to remove HCl from the stream, before the latter was directed to a burner. Metallographic examination showed that the cracks were intergranular and were frequently branched. Although nominal chemical composition of the component was found within the specified range, energy dispersive x-ray analysis (EDXA) indicated significant segregation of sulfur and chlorine along the grain boundaries. Failure was attributed to hypochlorous-acid (HClO)-induced stress-corrosion cracking (SCC). The HClO was formed by the reaction of HCl with atmospheric O 2 that entered the tube during shutdowns and startups. Residual stresses, originating from in situ bend forming of the tube during assembly of the line, provided a driving force for crack growth, and the segregation of sulfur on grain boundaries made the material more susceptible to cracking.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001815
EISBN: 978-1-62708-241-9
Abstract
Copper electrical feedthrough pins used in a bolting application in a refrigeration compressor had functioned without failure for years of production and thousands of units. When some of the pins began to fail, an investigation was conducted to determine the cause. Visual examination revealed that the observed fractures were mixed brittle intergranular with ductile microvoid dimples. An extensive analysis of failed samples combined with a process of elimination indicated that the fractures were due to stress-corrosion cracking caused by an unidentified chemical species within the sealed compressor chamber. A unique combination of applied stress, residual stress, stress riser, and grain size helped isolate the failure mechanism to a single production lot of material.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001838
EISBN: 978-1-62708-241-9
Abstract
Stainless steel pipe (273-mm OD x 8-mm wall thickness) used in the fabrication of large manifolds developed crack-like decohesions during a routine inductive bending procedure. The imperfections, which were found near the outside diameter, were around 3 mm in length oriented in the circumferential direction and penetrated nearly 2 mm into the pipe wall. The pipes were made of titanium-stabilized austenitic stainless steel X6CrNiMoTi17-12-2. Six hypotheses were considered during the investigation, which ultimately concluded that the failure was caused by liquation cracking due to overheating.
Series: ASM Failure Analysis Case Histories
Volume: 3
Publisher: ASM International
Published: 01 December 2019
DOI: 10.31399/asm.fach.v03.c9001808
EISBN: 978-1-62708-241-9
Abstract
Six cases of failure attributed to microbiologically influenced corrosion (MIC) were analyzed to determine if any of the failures could have been avoided or at least predicted. The failures represent a diversity of applications involving typical materials, primarily stainless steel and copper alloys, in contact with a variety of liquids, chemistries, and substances. Analytical techniques employed include stereoscopic examination, energy dispersive x-ray spectroscopy (EDS), temperature and pH testing, and metallographic analysis. The findings indicate that MIC is frequently the result of poor operations or improper materials selection, and thus often preventable.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0091345
EISBN: 978-1-62708-220-4
Abstract
Beveled weld-joint V-sections were fabricated to connect inlet and outlet sections of tubes in a type 347 stainless steel heat exchanger for a nitric acid concentrator. Each V-section was permanently marked with the tube numbers by a small electric-arc pencil. After one to two years of service, multiple leaks were observed in the heat-exchanger tubes. Investigation supported the conclusion that the corrosion occurred at two general locations: the stop point of the welds used to connect the inlet and outlet legs of the heat exchanger, and the stop points on the identifying numerals. Recommendations included replaced the material with type 304L stainless steel.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0046953
EISBN: 978-1-62708-220-4
Abstract
A portion of the wall of a reactor vessel used in burning impurities from carbon particles failed by localized melting. The vessel was made of Hastelloy X (Ni-22Cr-9Mo-18Fe). Considering the service environment, melting could have been caused either by excessive carburization (which would have lowered the melting point of the alloy markedly) or by overheating. A small specimen containing melted and unmelted metal was removed from the vessel wall and examined metallographically. It was observed that the interface between the melted zone and the unaffected base metal was composed of large grains and enlarged grain boundaries. An area a short distance away from the melted zone was fine grained and relatively free of massive carbides. This evidence supported the conclusion that the vessel failed by melting that resulted from heating to about 1230 to 1260 deg C (2250 to 2300 deg F), which exceeded normal operating temperatures, and carburization was not the principal cause of failure. No recommendations were made.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0048772
EISBN: 978-1-62708-220-4
Abstract
A return bend (made from ASTM A213, grade T11, ferritic steel) from a triolefin-unit heater ruptured after two years in service. The unit operated at 2410 kPa, with a hydrocarbon feed stream (85% propylene) entering at 260 to 290 deg C and leaving at 425 to 480 deg C. The fracture was found to terminate at the welds that joined the bend to the pipeline. A high concentration of both small and large inclusions was exhibited by the metallographic examination of the steel near the fracture. Branched cracks similar to those produced by stress corrosion of steel were observed in a section through the fireside edge of the fracture surface. Scale was observed over most of the crack path which acted as a stress raiser. The effect of the oxide was magnified during thermal cycles because of differential thermal expansion, with the steel having a greater expansion coefficient than the scale. It was recommended that material that is intended for critical applications where failure cannot be tolerated should be non-destructively examined.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c0089633
EISBN: 978-1-62708-220-4
Abstract
A stuffing box (sand cast from ASTM A 536, grade 60-45-10, ductile iron) began leaking water after two weeks of service. The machine was operating at 326 rpm with a discharge water pressure of 21.4 MPa (3100 psi). Investigation (visual inspection, mechanical analysis, and nital etched 100x magnification) supported the conclusion that the crack initiated at the inner edge of a lubrication hole and had propagated toward both the threaded and flange ends of the casting. An appreciable residual-stress concentration must have been present and caused propagation of the crack. The residual stress might have been caused when a fitting was tightly screwed into the lubrication hole, and it might have been concentrated by notches at the inner end of the hole created when the drill broke through the sidewall to the stuffing box.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001454
EISBN: 978-1-62708-220-4
Abstract
The interior of a cylindrical tank used for the road transport of concentrated sulfuric acid revealed severe blistering of the plates, mainly over the crown and more particularly on the first ring. The tank, made in 1958, was of welded construction, the material being mild steel plate. Some of the blisters were pierced by drilling a hole in the center and at the same time applying a small flame. In several cases combustion of the escaping gas caused minor explosions, a result characteristic of hydrogen. Etching showed the material to be a low-carbon steel in the partly spheroidized condition. There was no evidence of cracking of the material in the region of the blisters and bend tests demonstrated it possessed satisfactory ductility. The primary cause of the blistering was ascribed to the presence of discontinuities within the plate. This provided cavities in which the hydrogen was able to accumulate and build up pressure. Had the material been free from discontinuities of appreciable size, the blistering would not have occurred.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.chem.c9001408
EISBN: 978-1-62708-220-4
Abstract
Initially, two vertical double-acting two-stage compressors delivering chlorine gas at a pressure of 100 psi appeared to be running satisfactorily. About six months later the LP piston-rod of the No. 2 compressor failed due to burning, the compressor being worked double-acting at the time. About five months later, the HP piston rod of the No. 1 compressor failed in a similar manner. Specimens for microscopic examination were cut from the rod in the region of the failure and from the extreme end that had been situated above the piston and hence not subjected to an appreciable rise in temperature. The material was a steel in the normalized condition with a 0.35% C content. It appears probable that deficient lubrication of the gland resulted in overheating of the rod due to friction. The presence of a sprayed-metal coating was probably an additional factor in promoting failure, as it would present to the gas a surface area considerably greater than that of a homogeneous material.
1