Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Beam bridges
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001111
EISBN: 978-1-62708-214-3
Abstract
A catastrophic brittle fracture occurred in a welded steel (ASTM A517 grade H) trapezoidal cross-section box girder while the concrete deck of a large bridge was being poured. The failure occurred across the full width of a 57 mm (2 1 4 in.) thick, 760 mm (30 in.) wide flange and arrested 100 mm (4 in.) down the slant web. Failure analysis revealed a major deficiency in fracture toughness. The failure occurred as a brittle fracture after the formation of a welding hot crack and approximately 40 mm (1 1 2 in.) of slow crack growth. It was recommended that bridges fabricated from this grade of steel undergo frequent inspection and that stringent test requirements be imposed as a condition of use in non-redundant main load-carrying components.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001112
EISBN: 978-1-62708-214-3
Abstract
An I-beam of IS-226 specification—I-section dimensions of 450 x l50 x 10 mm (17.7 x 5.9 x 0.4 in.) and a length of 12.41 m (40.7ft)—was flame cut into two section in an open yard near these a coast under normal weather conditions. After approximately 112h, the shorter section of he I-beam split catastrophically along the entire length through the web. Detailed investigation revealed segregation of high levels of carbon, sulfur and phosphorus in the middle of the web and high residual stresses attributed to rolling during fabrication. Flame cutting caused a change in the distribution of the residual stresses, which, aided by low fracture toughness due to the poor quality of the beam, resulted in failure. It was recommended that segregation be avoided in cast ingots used for I-beam manufacture by implementing a better quality-control procedure.