Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-1 of 1
Aqueducts
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.bldgs.c0089752
EISBN: 978-1-62708-219-8
Abstract
A 208 cm (82 in.) ID steel aqueduct (ASTM A572, grade 42, type 2 steel) fractured circumferentially at two points 152 m (500 ft) apart in a section above ground. A year later, another fracture occurred in a buried section 6.4 km (4 mi) away. Both pipes fractured during Jan at similar temperatures and pressures. The pipe had a 24 mm wall thickness, and the hydrostatic head was 331 m (1085 ft). The air temperature was approximately -13 deg C (9 deg F), the water temperature approximately 0.6 deg C (33 deg F), and the steel temperature approximately -4 deg C (25 deg F). The pipe had been shop-fabricated in 12 m (40 ft) lengths, then shop welded into 24 m (80 ft) lengths. Field assembly was with bell-and-spigot joints. Investigation (visual inspection and Charpy V-notch testing) supported the conclusion that brittle fracture of the aqueduct pipe was attributed to a combination of stress concentrations at the toes of the fillet welds due to poor welding technique, including shop welds made without preheat, and a brittle condition of the steel at winter temperatures. Recommendations included revised welding techniques, installation of expansion joints, and the use of steel plate rolled from fully killed ingots.