Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Wing spars
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Cracked Aircraft Wing Spar
Available to PurchaseSeries: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006406
EISBN: 978-1-62708-217-4
Abstract
A crack was found in an aircraft main wing spar flange fabricated from 7079-T6 aluminum alloy during a routine nondestructive x-ray inspection after the craft had logged 300 h. Scanning electron microscopy (SEM) revealed an intergranular fracture pattern indicative of stress-corrosion cracking (SCC) and fatigue striations near the crack origin. Visual examination of the crack edge revealed that the installation of the fasteners produced a fit up stress. Further inspection of the opened fracture showed that the crack had been present for some time because a heavy buildup of corrosion products was seen on the fractured surface. Metallographic examination of the flange in the area of fracture initiation showed the presence of end grain exposure, which would promote SCC. Electron optical examination of the fracture clearly showed the flange was cracking by a mixed mode of stress corrosion and fatigue. The cracking was accelerated because of an inadvertent fit up stress during installation. The age of the crack could not be established. However, a reevaluation of prior x-ray inspections in this area would result in some close estimate of the age of the crack. End grain exposure further promoted SCC.
Series: ASM Failure Analysis Case Histories
Volume: 1
Publisher: ASM International
Published: 01 December 1992
DOI: 10.31399/asm.fach.v01.c9001021
EISBN: 978-1-62708-214-3
Abstract
Following the crash of a Mirage III-0 aircraft (apparently caused by engine failure), a small crack was detected in a bolt hole in the wing main spar (AU4SG aluminum alloy). Because this area was considered to be critical to aircraft safety and similar cracking was found in other spars in service, the Royal Australian Air Force requested that the crack growth rate during service be determined. The loading history of the aircraft was made available in the form of flight by-flight records of the counts from the vertical accelerometer sensors fitted to the airframe and a series of “overstress” events recorded during the life of the aircraft. The bolt hole was examined by eddy current testing, visual examination, high-powered light microscope, and scanning electron microscope. Simulation tests were also conducted. The use of simulation specimens permitted actual crack growth rate data to be determined for the configuration of interest.