Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 20
Aircraft fuel system components
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047590
EISBN: 978-1-62708-217-4
Abstract
A weld in a fuel-line tube broke after 159 h of engine testing. The 6.4-mm (0.25-in.) OD x 0.7-mm (0.028-in.) wall thickness tube and the end adapters were all of type 347 stainless steel. The butt joints between tube and end adapters were made by automated gas tungsten arc (orbital arc) welding. It was found that the tube had failed in the HAZ. Examination of a plastic replica of the fracture surface in a transmission electron microscope established that the crack origin was at the outer surface of the tube. The crack growth was by fatigue; closely spaced fatigue striations were found near the origin, and more widely spaced striations near the inner surface. The quality of the weld and the chemical composition of the tube both conformed to the specifications. However, the fuel-line assembly had vibrated excessively in service. The fuel-line fracture was caused by fatigue induced by severe vibration in service. Additional tube clamps were provided to damp the critical vibrational stresses. No further fuel-line fractures were encountered.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006398
EISBN: 978-1-62708-217-4
Abstract
Inspections and microstructural analysis revealed intergranular corrosion of 6061-T6 aluminum alloy aircraft fuel line beneath ferrules. The cause of the corrosion was traced to the fuel line marking process, which involved electrolytic labeling. Although subsequent rinsing of the fuel lines washed off most of the electrolyte, some was trapped between the 6061-T6 tubing and the ferrule. This condition made intergranular corrosion of the fuel lines inevitable. The attack caused grains to become dislodged, giving the appearance of pitting. Corrosion penetrated approximately 0.13 mm (0.005 in.) into the tubing. Experiments indicated that the corrosion products were inactive. It was recommended that another marking process be used that does not involve corrosive materials. The prevention of electrolyte from being trapped between the tubing and ferrules by using a MIL-S-8802 sealant was recommended.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047673
EISBN: 978-1-62708-217-4
Abstract
A series of resistance spot welds joining Z-shape and C-shape members of an aircraft drop-tank structure failed during ejection testing. The members were fabricated of alclad aluminum alloy 2024-T62. The back surface of the C-shape members showed severe electrode-indentation marks off to one side of the spot weld, suggesting improper electrode contact. Visual examination of the weld fractures showed that the weld nuggets varied considerably in size, some being very small and three exhibiting an HAZ but no weld. Of 28 welds, only nine had acceptable nugget diameters and fusion-zone widths. The weld deficiencies were traced to problems in forming and fit-up of the C-shape members and to difficulties in alignment and positioning of the weld tooling. The failure of the resistance spot welds was attributed to poor weld quality caused by unfavorable fit-up and lack of proper weld-tool positioning. The problem could be solved by better forming procedures to provide an accurate fit-up that would not interfere with electrode alignment.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006402
EISBN: 978-1-62708-217-4
Abstract
New aircraft wing panels extruded from 7075-T6 aluminum exhibited an unusual pattern of circular black interrupted lines, which could not be removed by scouring or light sanding. The panels, subsequent to profiling and machining, were required to be penetrated inspected, shot peened, H2SO4 anodized, and coated with MIL-C-27725 integral fuel tank coating on the rib side. Scanning electron microscopy and microprobe analysis (both conventional energy-dispersive and Auger analyzers) showed that the anodic coating was applied over an improperly cleaned and contaminated surface. The expanding corrosion product had cracked and, in some places, had flaked away the anodized coating. The corrodent had penetrated the base aluminum in the form of subsurface intergranular attack to a depth of 0.035 mm (0.0014 in.). It was recommended that a vapor degreaser be used during cleaning prior to anodizing. A hot inhibited alkaline cleaner was also recommended during cleaning prior to anodizing. The panels should be dichromate sealed after anodizing. The use of deionized water was also recommended during the dichromate sealing operation. In addition, the use of an epoxy primer prior to shipment of the panels was endorsed. Most importantly, surveillance of the anodizing process itself was emphasized.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047677
EISBN: 978-1-62708-217-4
Abstract
Resistance spot welds joining aluminum alloy 2024-T8511 stiffeners to the aluminum alloy 6061-T62 skin of an aircraft drop tank failed during slosh and vibration testing. Visual examination of the fracture surfaces showed that the failure was by tensile or bending overload. Measurements of the fractured spot welds established that all welds were below specification size. Review of the assembly procedures revealed that there had been poor fit-up between the stiffeners and the tank skin, which resulted in weak, undersize weld nuggets. The spot welds failed because of undersize nuggets that were the result of shunting caused by poor fit-up. The forming procedures were revised to achieve a precise fit between the stiffener and the tank wall. Also, an increase in welding current was suggested.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091727
EISBN: 978-1-62708-217-4
Abstract
During an acceptance test of the Apollo spacecraft 101 service module prior to delivery, an SPS fuel pressure vessel (SN054) (titanium Ti-6Al-4V, approximately 1.2 m (4 ft) in diam and 3 m (10 ft) long) containing methanol developed cracks adjacent to the welds. The test was stopped. This acceptance test had been run 38 times on similar pressure vessels without problems. The methanol was a safe-fluid replacement for the storable hypergolic fuels (blend of 50% hydrazine and 50% unsymmetrical dimethyl hydrazine). Investigation (visual inspection and 65X images) showed similarities to stress-corrosion resulting from contamination during misprocessing of the vessels. However, another vessel underwent a more severe testing procedure and failed catastrophically. Further investigation supported the conclusion that the failure cause was SCC of titanium in methanol. Attack is promoted by crazing of the protective oxide film. It was learned that minor changes in the testing procedures could inhibit or accelerate the reaction. Recommendations included replacing the methanol with a suitable alternate fluid. Isopropyl alcohol was chosen after considerable testing. This incident further resulted in the imposition of a control specification (MF0004-018) for all fluids that contact titanium for existing and future space designs.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0091809
EISBN: 978-1-62708-217-4
Abstract
Aluminum 7075 aircraft wing tanks failed in the 1950s. Investigation (visual inspection, biological analysis, and chemical analysis) supported the conclusion that MIC was the cause of the failures. Water condensed into the fuel tanks during flight led to microbial growth on the jet fuel. Pitting attack occurred under microbial deposits on the metal surface in the water phase or at the water-fuel interface. Previously, exposure of aluminum 7075 to cultures of various isolates showed that 27 bacterial isolates and 3 fungi could seriously corrode the aluminum alloy over several weeks. No recommendations were made.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046142
EISBN: 978-1-62708-217-4
Abstract
To ensure no malfunctions and although there were no apparent problems, a main fuel control was returned to the factory for examination after service on a test aircraft engine that had experienced high vibrations. When the fuel control was disassembled, a lever, cast from AMS 5350 (AISI type 410) stainless steel that was through-hardened to 26 to 32 HRC and passivated, was shown to be cracked. The crack initiated at the sharp corner of the elongated milled slot and propagated across to the outer wall. The sections around the crack were spread about 30 deg apart, showing the fracture surface under investigation had beach marks initiating at the sharp corner along the milled slot. Changes in frequency or amplitude of vibration caused different rates of propagation, resulting in a change in pattern. This evidence supported the conclusion that the lever failed in fatigue as a result of excessive vibration of the fuel control on the test engine. Recommendations included redesign of the lever with a large radius in the corner where cracking originated. This would reduce the stress-concentration factor significantly, thus minimizing the susceptibility of the lever to fatigue.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0089563
EISBN: 978-1-62708-217-4
Abstract
A lever (machined from a casting made of AISI type 410 stainless steel, then surface hardened by nitriding) that was a component of the main fuel-control linkage of an aircraft engine fractured in flight after a service life of less than 50 h. Investigation (radiographic inspection) supported the conclusions that the lever broke at a cold shut extending through approximately 95% of the cross section. The normally applied load constituted an overload of the remainder of the lever. Recommendations included adding magnetic-particle inspection to the inspection procedures for this cast lever.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0047793
EISBN: 978-1-62708-217-4
Abstract
Failure of a case hardened steel shaft incorporated fuel pump in a turbine-powered aircraft resulted in damage to the aircraft. The disassembled pump was found to be dry and free of any contamination. Damage was exhibited on the pressure side of each spline tooth in the impeller and the relatively smooth cavities and undercutting of the flank on this side indicated that the damage was caused by an erosion or abrasion mechanism. A relatively smooth worn area was formed at the center of each tooth due to an abrasive action and an undulating outline with undercutting was observed on the damaged side. Particles of sand, paint, or plastic, fibers from the cartridge, brass, and steel were viewed in the brown residue on the filter cartridge under a low power microscope and later confirmed by chemical analysis. Large amount of iron was identified by application of a magnet. It was concluded that the combined effect of vibration and abrasive wear by sand and metal particles removed from the splines damaged the shaft. Case hardened spline teeth surface was recommended to increase resistance to wear and abrasion.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001491
EISBN: 978-1-62708-217-4
Abstract
Two silica phenolic nozzle liners cracked during proof testing. The test consisted of pressuring the nozzles to 14.1 MPa (2050 psia) for 5 to 20 s. It was concluded that the failure was due to longitudinal cracking in the convergent exhaust-nozzle insulators, stemming from the use of silica phenolic tape produced from flawed materials that went undetected by the quality control tests, which at the time, assessed tape strength properties in the warp rather than the bias direction. Once the nozzle manufacturer and its suppliers identified the problem, they changed their quality control procedures and resumed production of nozzle liners with more tightly controlled fiber/fabric materials.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0006424
EISBN: 978-1-62708-217-4
Abstract
An external tank pressure/vent valve regulates the external tank fuel feed system, which transfers fuel under pressure to the internal tanks of the aircraft. A dual-position valve was found to be sticking at the intermediate positions. Also, service air check valves located on the incoming lines contained poppets that were being stuck in a closed or partially closed position because of suspected corrosion product. Residue taken from the check valve poppet and from the dual-position valve was chemically analyzed. Chloride was present in both samples. It was suspected that moisture entering the service air lines left a chloride-containing compound upon evaporation within the air check valves and pressure/vent assembly. This compound subsequently reacted with the anodized, dichromate sealed check valve housing to lock the check valve poppets in a closed or partially closed position, decreasing the actual pressure being supplied to the pressure/vent valve. It was recommended that an inspection be conducted to ensure that the service air check valves are operating properly prior to removal and servicing of the pressure/vent valve assembly. It was also recommended that dry-film lubricant be checked to ensure that it meets specifications for the pressure/vent valve assembly.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0046227
EISBN: 978-1-62708-217-4
Abstract
The floors (fabricated from aluminum alloy 7178-T6 sheet, with portions of the sheet chemically milled to reduce thickness) of the fuel tanks in two aircraft failed almost identically after 1076 and 1323 h of service, respectively. Failure in both tanks occurred in the rear chemically milled section of the floor. An alkaline etch-type cleaner was used on the panels before chemical milling and before painting. Various tests and measurements indicated that the aluminum alloy used for the fuel-tank floors conformed to the specifications for 7178-T6. Low power magnification, fractographs taken with a scanning electron, and optical microscopic examination of the milled sections revealed extensive pitting on both sides of the floors. Evidence found supports the conclusions that the floors failed by fatigue cracking that initiated near the center of the fuel-tank floor and ultimately propagated as rapid ductile-overload fractures. The fatigue cracks originated in pits on the fuel-cell side of the tank floors. The pits were attributed to attack caused by the alkaline-etch cleaning process. Recommendations included monitoring of the alkaline-etch cleaning to avoid the formation of pits and careful inspection following alkaline-etch cleaning, to be scheduled before release of the floor panels for painting.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001743
EISBN: 978-1-62708-217-4
Abstract
Cylinder fatigue can result from abnormal heating in service. Fatigue can be experienced also by piston heads, exhaust valves, and turbosupercharger housings (castings). Pistons from different engines series can sometimes fit, but because of slight design modifications, they may not function properly. Circumferential cracks and fractures near the head-to- barrel junctions have occurred on numerous cylinders of reciprocating piston engines. In most instances, cracks were caused by high cyclic pressures and high temperatures resulting most probably from detonation. At times, fractures or cracks (or both) were also caused by a combination of unfavorable temperature distribution (and possibly excessive pressures around the cylinder barrel), un-nitrided internal surfaces of cylinder barrels, and inadequate thread contours, which caused high stress concentrations at the thread roots. One example of the most common type of cylinder failure is illustrated.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001506
EISBN: 978-1-62708-217-4
Abstract
A single-engine aircraft was climbing to 8000 ft when the engine suddenly lost power. The landing gear was torn off during the emergency landing. During the field investigation, the fuel line was found to be separated from the fuel pump outlet due to a failure of the elbow fitting. A bracket which supports the in-line fuel flow transducer also was found broken. Examination of the elbow fracture revealed characteristics of low-cycle fatigue failure. Examination of the support bracket fractures revealed a high-cycle mode of fatigue failure, with the primary fatigue extending along the full length of the 90 deg bend in the bracket. It was concluded that the failure was caused by an incorrectly-installed support bracket. It was recommended that the installation procedure be clarified.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c9001558
EISBN: 978-1-62708-217-4
Abstract
A liquid hydrogen main fuel control valve for a rocket engine failed by fracture of the Ti-5Al-2.5Sn body during the last of a series of static engine test firings. Fractographic, metallurgical, and stress analyses determined that a combination of fatigue and unexpected aqueous stress-corrosion cracking initiated and propagated the crack which caused failure. The failure analysis approach and its results are described to illustrate how fractography and fracture mechanics, together with a knowledge of the crack initiation and propagation mechanisms of the valve material under various stress states and environments, helped investigators to trace the cause of failure.
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c0047586
EISBN: 978-1-62708-236-5
Abstract
A fuel-nozzle-support assembly showed transverse indications after fluorescent liquid-penetrant inspection of a repair-welded area at a fillet on the front side of the support neck adjacent to the mounting flange. Visual examination disclosed an irregular crack. The crack through the neck was sectioned; examination showed that the crack had extended through the repair weld. The crack had followed an intergranular path. The crack was opened, and binocular-microscope examination of the fracture surface showed that the surface contained dendrites with discolored oxide films that were typical of exposure to air when very hot. Several additional subsurface cracks, typical of hot tears, were observed in and near the weld. There had been too much local heat input in making the repair weld. The result was localized thermal contraction and hot tearing. The cracking of the repair weld was attributed to unfavorable welding practice that accentuated thermal contraction stresses and caused hot tearing. Recommendations involved use of a small-diameter welding electrode, a lower heat input, and deposition in shallow layers that could be effectively peened between passes to minimize internal stress.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.usage.c9001508
EISBN: 978-1-62708-236-5
Abstract
New type 321 corrosion-resistant steel heat shields were cracking during welding operations. A failure analysis was performed. The cause was found to be chloride induced stress-corrosion cracking. Packaging was suspected and confirmed to be the cause of the chloride contamination. A contributing factor was the length of time spent in the packaging, 21 years.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001294
EISBN: 978-1-62708-215-0
Abstract
A precipitation-hardened stainless steel poppet valve assembly used to shut off the flow of hydrazine fuel to an auxiliary power unit was found to leak. SEM and optical micrographs revealed that the final heat treatment designed for the AM-350 bellows material rendered the AM-355 poppet susceptible to intergranular corrosive attack (IGA) from a decontaminant containing hydroxy-acetic acid. This attack provided pathways for which fluid could leak across the sealing surface in the closed condition. It was concluded that the current design is flight worthy if the poppet valve assembly passes a preflight helium pressure test. However a future design should use the same material for the poppet and bellows so that the final heat treatment will produce an assembly not susceptible to IGA.
Series: ASM Failure Analysis Case Histories
Volume: 2
Publisher: ASM International
Published: 01 December 1993
DOI: 10.31399/asm.fach.v02.c9001296
EISBN: 978-1-62708-215-0
Abstract
A 52000 bearing steel valve guide component operating in the fuel supply system of a transport aircraft broke into two pieces after 26 h of flight. The valve guide fractured through a set of elongated holes that had been electrodischarge machined into the component. Analysis indicated that the part failed by low cycle fatigue. The fracture was brittle in nature and had originated at a severely eroded zone of craters in a hard, deep white layer that was the result of remelting during electrodischarge machining. It was recommended that the remaining parts be inspected using a stereoscopic microscope and/or a borescope.