Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2
Surface hardness
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.aero.c0048257
EISBN: 978-1-62708-217-4
Abstract
Evidence of destructive pitting on the gear teeth (AMS 6263 steel) in the area of the pitchline was exhibited by an idler gear for the generator drive of an aircraft engine following test-stand engine testing. The case hardness was investigated to be lower than specified and it was suggested that it had resulted from surface defects. A decarburized surface layer and subsurface oxidation in the vicinity of pitting were revealed by metallographic examination of the 2% nital etched gear tooth sample. It was concluded that pitting had resulted as a combination of both the defects. The causes for the defects were reported based on previous investigation of heat treatment facilities. Oxide layer was caused by inadequate purging of air before carburization while decarburization was attributed to defects in the copper plating applied to the gear for its protection during austenitizing in an exothermic atmosphere. It was recommended that steps be taken during heat treatment to ensure neither of the two occurred.
Series: ASM Failure Analysis Case Histories
Publisher: ASM International
Published: 01 June 2019
DOI: 10.31399/asm.fach.modes.c0048253
EISBN: 978-1-62708-234-1
Abstract
Two intermediate impeller drive gears (made of AMS 6263 steel, gas carburized, hardened, and tempered) exhibited evidence of pitting and abnormal wear after production tests in test-stand engines. The gears were examined for hardness, case depth, and microstructure of case and core. It was found that gear 1 had a lower hardness than specified while the case hardness of gear 2 was found to be within limits. Both the pitting and the wear pattern were revealed to be more severe on gear 1 than on gear 2. Surface-contact fatigue (pitting) of gear 1 (cause of lower carbon content of the carburized case and hence lower hardness) was found to be the reason for failure. It was recommended that the depth of the carburized case on impeller drive gears be increased from 0.4 to 0.6 mm to 0.6 to 0.9 mm to improve load-carrying potential and wear resistance. A minimum case-hardness requirement was set at 81 HRA.